A brute-force approach to check if a line segment crosses a simple polygon

本文提出一种简单但实用的方法来判断线段是否穿过或多边形内。通过将线段分解为更小的部分并检查这些部分是否位于多边形内部,该算法适用于简单的计算机图形学多边形。

Split a segment into smaller parts in order to check if the segment crosses a polygon or not.

Check a big segment by checking one of its small part

Introduction 

Checking if a line segment really crosses or is inside a polygon is always a hard geometric problem for programmers to solve. We can hardly find a general algorithm for line segment-polygon intersection checking. My article is to suggest an idea for testing whether a line segment crosses a polygon or not, it can be applied for only simple computer graphics polygons (including convex and concave ones).

Background

Conventions

The pseudo-code I am using in this article is a Java-like language. It is a mixture between structural programming and object oriented programming. Suppose that point, line segments (from now on I will use 'segment'), and polygons are implemented with basic methods such as segment-segment intersection, segment containing a point, polygon containing a point, length of a segment, midpoint…

Acknowledgements

A segment crosses a polygon if one of its parts crosses that polygon. A segment crosses a polygon if it cuts or is inside that polygon. A segment cuts a polygon if it has at least one intersection that is not the end point of the segment. A segment is inside a polygon if every point of the segment is inside the polygon (end points of the segment can lay on the boundary of the polygon). These edges of a polygon are not inside this polygon.

Figure 1 - Segments cross polygon

Figure 2 - Segments do not cross polygon

New Solution

Idea

Directly from the acknowledgements, we have these clauses:

  • A segment crosses a polygon if it cuts or is inside that polygon.
  • A segment is inside a polygon if every point of the segment is inside the polygon.

The conclusion is: if a part of the segment is inside the polygon, the segment crosses the polygon. So, our work is to split the original segment into smaller parts in order to check if there is a part that is inside the polygon.

Which kind of segment can be inside a polygon?

If a segment is totally inside or outside a polygon, then it has no intersection with the edges of the polygon (end points of the segment can lay on the boundary of the polygon). We can determine only that kind of segment is inside/outside a polygon.

Figure 3 - Segments that do not intersect edges of polygon

How to split a segment?

With each segment, we try to find its intersection with an edge of the checking polygon. If the intersection exists and is not an end point of this segment, split the segment into two small parts, one is from Begin to the intersection, another from the intersection to the End (Begin and End the end points of the segment). Do these steps recursively until the segment has no intersection with the edges of the polygon.

Figure 4 - How we split a segment into parts

Figure 4 is a good example: Segment MN intersects edge AB and O is the intersection. We split MN into MO and ON.

Check if a part is inside a polygon

The segment s, that we are checking, is a small part of a big segment. The condition is "segment s and polygon p have no intersection" (it is OK if end points of segment s lay on the boundary of the polygon p). 

If the part is an edge of the polygon, it is not inside. Otherwise, every point of the part is on the same side (end points can lay on the boundary of the polygon). We can pick up an arbitrary point (I chose midpoint), the whole part will be on the same side to this point. Pseudo-code:

public boolean Cover(Polygon p, Segment s)
{
    // if segment is a edge of this polygon
    for (int i=0; i< p.Edges.count; i++)
        if (s == p.Edges[i])
            return false;
    // segment cannot be spitted
    // so, if the midpoint is inside polygon, whole segment will inside
    Point mid = s.MidPoint();
    if (p.Contains(mid))
        return true;
    else
        return false;
}
Check if a segment crosses a polygon

Step 1: Try to split the segment into two parts. If it is possible, go to step 2, otherwise go to step 4.

Step 2: Recursively check if the first part crosses the polygon. If it does not, go to step 3, otherwise the segment crosses the polygon. Stop the algorithm.

Step 3: Recursively check if the second part crosses the polygon. If it does not, the segment does not cross the polygon, otherwise the segment crosses the polygon. Stop the algorithm.

Step 4: Check if the segment is inside the polygon. If it is inside, the segment crosses the polygon, otherwise it does not. Stop the algorithm.

Pseudo-code:

public boolean Cross(Segment s, Polygon p) {
    // split the big segment into parts
    Point split_point = null;
    for (int i=0; i< p.Edges.count; i++)
    {
        Segment edge = p.Edges[i];
        // find intersection that is not end point of segment
        split_point = s.InterSectionExceptThisEnds(edge);
        if (split_point != null)
            break;
    }
    // if we can split
    if (split_point != null) // then check each part
    {
        boolean first_part = Cross(new Segment(s.p1,split_point), p);
        // a part intersects means whole segment intersects
        if (first_part == true)
            return first_part;
        // if first part doesn't intersect, it depends on second one
        boolean second_part = Cross(new Segment(split_point,s.p2), p);
        return second_part;
    } 
    // cannot split this segment
    else
    {
        boolean result = Cover (p, s);
        return result;
    }
}

Back to Figure 4 for an example. Let’s do it step by step.

Figure 5 - How we determine that segment MN crosses the polygon

  1. First, we split MN into MO and ON.
  2. Then we check MO. MO cannot be split and it is outside the polygon.
  3. So we have to check ON.
  4. ON can be split into OP and PN.
  5. OP cannot be split and it is inside the polygon.
  6. OP is a part of ON, so ON is crossing the polygon.
  7. ON is the second part of MN, then we determine that MN crosses the polygon.

Conclusion

This algorithm can check if a segment crosses a polygon, and the programmer can modify it to determine that the segment is inside or cuts the polygon and gets the intersections if they exist. Do not apply this to a complex polygon (a polygon that intersects itself or has holes in it). But programmers can separate a self-intersecting polygon into some simple polygons and determine holes as polygons, then apply and modify this algorithm for their own purposes. I used to spend a lot of time searching for a geometric algorithm on the internet, which is time-consuming, so I am sharing my experience and hoping that it is helpful. I am waiting for positive comments to make the article better. Have fun.


from: http://www.codeproject.com/Articles/371959/A-brute-force-approach-to-check-if-a-line-segment

基于实时迭代的数值鲁棒NMPC双模稳定预测模型(Matlab代码实现)内容概要:本文介绍了基于实时迭代的数值鲁棒非线性模型预测控制(NMPC)双模稳定预测模型的研究与Matlab代码实现,重点在于通过数值方法提升NMPC在动态系统中的鲁棒性与稳定性。文中结合实时迭代机制,构建了能够应对系统不确定性与外部扰动的双模预测控制框架,并利用Matlab进行仿真验证,展示了该模型在复杂非线性系统控制中的有效性与实用性。同时,文档列举了大量相关的科研方向与技术应用案例,涵盖优化调度、路径规划、电力系统管理、信号处理等多个领域,体现了该方法的广泛适用性。; 适合人群:具备一定控制理论基础和Matlab编程能力,从事自动化、电气工程、智能制造等领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①用于解决非线性动态系统的实时控制问题,如机器人控制、无人机路径跟踪、微电网能量管理等;②帮助科研人员复现论文算法,开展NMPC相关创新研究;③为复杂系统提供高精度、强鲁棒性的预测控制解决方案。; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,重点关注NMPC的实时迭代机制与双模稳定设计原理,并参考文档中列出的相关案例拓展应用场景,同时可借助网盘资源获取完整代码与数据支持。
UWB-IMU、UWB定位对比研究(Matlab代码实现)内容概要:本文介绍了名为《UWB-IMU、UWB定位对比研究(Matlab代码实现)》的技术文档,重点围绕超宽带(UWB)与惯性测量单元(IMU)融合定位技术展开,通过Matlab代码实现对两种定位方式的性能进行对比分析。文中详细阐述了UWB单独定位与UWB-IMU融合定位的原理、算法设计及仿真实现过程,利用多传感器数据融合策略提升定位精度与稳定性,尤其在复杂环境中减少信号遮挡和漂移误差的影响。研究内容包括系统建模、数据预处理、滤波算法(如扩展卡尔曼滤波EKF)的应用以及定位结果的可视化与误差分析。; 适合人群:具备一定信号处理、导航定位或传感器融合基础知识的研究生、科研人员及从事物联网、无人驾驶、机器人等领域的工程技术人员。; 使用场景及目标:①用于高精度室内定位系统的设计与优化,如智能仓储、无人机导航、工业巡检等;②帮助理解多源传感器融合的基本原理与实现方法,掌握UWB与IMU互补优势的技术路径;③为相关科研项目或毕业设计提供可复现的Matlab代码参考与实验验证平台。; 阅读建议:建议读者结合Matlab代码逐段理解算法实现细节,重点关注数据融合策略与滤波算法部分,同时可通过修改参数或引入实际采集数据进行扩展实验,以加深对定位系统性能影响因素的理解。
本系统基于MATLAB平台开发,适用于2014a、2019b及2024b等多个软件版本,并提供了可直接执行的示例数据集。代码采用模块化设计,关键参数均可灵活调整,程序结构逻辑分明且附有详细说明注释。主要面向计算机科学、电子信息工程、数学等相关专业的高校学生,适用于课程实验、综合作业及学位论文等教学与科研场景。 水声通信是一种借助水下声波实现信息传输的技术。近年来,多输入多输出(MIMO)结构与正交频分复用(OFDM)机制被逐步整合到水声通信体系中,显著增强了水下信息传输的容量与稳健性。MIMO配置通过多天线收发实现空间维度上的信号复用,从而提升频谱使用效率;OFDM方案则能够有效克服水下信道中的频率选择性衰减问题,保障信号在复杂传播环境中的可靠送达。 本系统以MATLAB为仿真环境,该工具在工程计算、信号分析与通信模拟等领域具备广泛的应用基础。用户可根据自身安装的MATLAB版本选择相应程序文件。随附的案例数据便于快速验证系统功能与性能表现。代码设计注重可读性与可修改性,采用参数驱动方式,重要变量均设有明确注释,便于理解与后续调整。因此,该系统特别适合高等院校相关专业学生用于课程实践、专题研究或毕业设计等学术训练环节。 借助该仿真平台,学习者可深入探究水声通信的基础理论及其关键技术,具体掌握MIMO与OFDM技术在水声环境中的协同工作机制。同时,系统具备良好的交互界面与可扩展架构,用户可在现有框架基础上进行功能拓展或算法改进,以适应更复杂的科研课题或工程应用需求。整体而言,该系统为一套功能完整、操作友好、适应面广的水声通信教学与科研辅助工具。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值