启动spark-shell报错

当使用JDK11尝试启动Spark-Shell时遇到错误。错误信息表明JDK版本过高,需降级到JDK8。通过执行卸载命令移除JDK11,然后安装JDK8,成功解决启动问题。

错误信息:

[root@HadoopStudy bin]# ./spark-shell 
WARNING: An illegal reflective access operation has occurred
WARNING: Illegal reflective access by org.apache.hadoop.security.authentication.util.KerberosUtil (file:/home/zhanghaiping/HadoopApp/hadoop-2.9.2/share/hadoop/common/lib/hadoop-auth-2.9.2.jar) to method sun.security.krb5.Config.getInstance()
WARNING: Please consider reporting this to the maintainers of org.apache.hadoop.security.authentication.util.KerberosUtil
WARNING: Use --illegal-access=warn to enable warnings of further illegal reflective access operations
WARNING: All illegal access operations will be denied in a future release
2019-07-09 15:31:10 WARN  NativeCodeLoader:62 - Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).

Failed to initialize compiler: object java.lang.Object in compiler mirror not found.
** Note that as of 2.8 scala does not assume use of the java classpath.
** For the old behavior pass -usejavacp to scala, or if using a Settings
** object programmatically, settings.usejavacp.value = true.

Failed to initialize compiler: object java.lang.Object in compiler mirror not found.
** Note that as of 2.8 scala does not assume use of the java classpath.
** For the old behavior pass -usejavacp to scala, or if using a Settings
** object programmatically, settings.usejavacp.value = true.
Exception in thread "main" java.lang.NullPointerException
	at scala.reflect.internal.SymbolTable.exitingPhase(SymbolTable.scala:256)
	at scala.tools.nsc.interpreter.IMain$Request.x$20$lzycompute(IMain.scala:896)
	at scala.tools.nsc.interpreter.IMain$Request.x$20(IMain.scala:895)
	at scala.tools.nsc.interpreter.IMain$Request.headerPreamble$lzycompute(IMain.scala:895)
	at scala.tools.nsc.interpreter.IMain$Request.headerPreamble(IMain.scala:895)
	at scala.tools.nsc.interpreter.IMain$Request$Wrapper.preamble(IMain.scala:918)
	at scala.tools.nsc.interpreter.IMain$CodeAssembler$$anonfun$apply$23.apply(IMain.scala:1337)
	at scala.tools.nsc.interpreter.IMain$CodeAssembler$$anonfun$apply$23.apply(IMain.scala:1336)
	at scala.tools.nsc.util.package$.stringFromWriter(package.scala:64)
	at scala.tools.nsc.interpreter.IMain$CodeAssembler$class.apply(IMain.scala:1336)
	at scala.tools.nsc.interpreter.IMain$Request$Wrapper.apply(IMain.scala:908)
	at scala.tools.nsc.interpreter.IMain$Request.compile$lzycompute(IMain.scala:1002)
	at scala.tools.nsc.interpreter.IMain$Request.compile(IMain.scala:997)
	at scala.tools.nsc.interpreter.IMain.compile(IMain.scala:579)
	at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:567)
	at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:565)
	at scala.tools.nsc.interpreter.ILoop.interpretStartingWith(ILoop.scala:807)
	at scala.tools.nsc.interpreter.ILoop.command(ILoop.scala:681)
	at scala.tools.nsc.interpreter.ILoop.processLine(ILoop.scala:395)
	at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1$$anonfun$apply$mcV$sp$1$$anonfun$apply$mcV$sp$2.apply(SparkILoop.scala:79)
	at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1$$anonfun$apply$mcV$sp$1$$anonfun$apply$mcV$sp$2.apply(SparkILoop.scala:79)
	at scala.collection.immutable.List.foreach(List.scala:381)
	at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1$$anonfun$apply$mcV$sp$1.apply$mcV$sp(SparkILoop.scala:79)
	at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1$$anonfun$apply$mcV$sp$1.apply(SparkILoop.scala:79)
	at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1$$anonfun$apply$mcV$sp$1.apply(SparkILoop.scala:79)
	at scala.tools.nsc.interpreter.ILoop.savingReplayStack(ILoop.scala:91)
	at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1.apply$mcV$sp(SparkILoop.scala:78)
	at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1.apply(SparkILoop.scala:78)
	at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1.apply(SparkILoop.scala:78)
	at scala.tools.nsc.interpreter.IMain.beQuietDuring(IMain.scala:214)
	at org.apache.spark.repl.SparkILoop.initializeSpark(SparkILoop.scala:77)
	at org.apache.spark.repl.SparkILoop.loadFiles(SparkILoop.scala:110)
	at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply$mcZ$sp(ILoop.scala:920)
	at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply(ILoop.scala:909)
	at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply(ILoop.scala:909)
	at scala.reflect.internal.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:97)
	at scala.tools.nsc.interpreter.ILoop.process(ILoop.scala:909)
	at org.apache.spark.repl.Main$.doMain(Main.scala:76)
	at org.apache.spark.repl.Main$.main(Main.scala:56)
	at org.apache.spark.repl.Main.main(Main.scala)
	at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
	at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
	at java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
	at java.base/java.lang.reflect.Method.invoke(Method.java:566)
	at org.apache.spark.deploy.JavaMainApplication.start(SparkApplication.scala:52)
	at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:894)
	at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:198)
	at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:228)
	at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:137)
	at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)

原因:JDK版本高于9,我使用的是11不行,重新卸载安装JDK8。

卸载命令:

sudo rm -fr /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
sudo rm -fr /Library/PreferencesPanes/JavaControlPanel.prefPane
sudo rm -fr ~/Library/Application\ Support/Java

重新安装JDK8之后,重新启动:

[root@HadoopStudy spark]# ./bin/spark-shell 
2019-07-09 16:35:17 WARN  NativeCodeLoader:62 - Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
Spark context Web UI available at http://HadoopStudy:4040
Spark context available as 'sc' (master = local[*], app id = local-1562661343725).
Spark session available as 'spark'.
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /___/ .__/\_,_/_/ /_/\_\   version 2.3.3
      /_/
         
Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_212)
Type in expressions to have them evaluated.
Type :help for more information.

scala> 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值