cf 573B Bear and Blocks 小小的脑洞题

本文介绍了一道关于熊摧毁积木塔的算法题,通过分析塔的结构与破坏方式,提出一种从两端计算各塔倒塌所需步骤的方法,并给出具体实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:

B. Bear and Blocks
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Limak is a little bear who loves to play. Today he is playing by destroying block towers. He built n towers in a row. The i-th tower is made of hi identical blocks. For clarification see picture for the first sample.

Limak will repeat the following operation till everything is destroyed.

Block is called internal if it has all four neighbors, i.e. it has each side (top, left, down and right) adjacent to other block or to the floor. Otherwise, block is boundary. In one operation Limak destroys all boundary blocks. His paws are very fast and he destroys all those blocks at the same time.

Limak is ready to start. You task is to count how many operations will it take him to destroy all towers.

Input

The first line contains single integer n (1 ≤ n ≤ 105).

The second line contains n space-separated integers h1, h2, ..., hn (1 ≤ hi ≤ 109) — sizes of towers.

Output

Print the number of operations needed to destroy all towers.

Sample test(s)
input
6
2 1 4 6 2 2
output
3
input
7
3 3 3 1 3 3 3
output
2
Note

The picture below shows all three operations for the first sample test. Each time boundary blocks are marked with red color.

After first operation there are four blocks left and only one remains after second operation. This last block is destroyed in third operation.



思路:首先由如下几点:

1.第i(i=0,1,2....n-1)个位置的塔最多需要min(i+1,n-i)次被打倒.可由数学归纳法证明。

2.当第i个位置的塔比第i-1个位置的塔高时,将这个塔打倒需要a[i-1]+1次。

3.打倒一座塔最多需要h[i]次

由上述几条可知,我们可以从左右两端去计算每座塔需要多少步被打倒,然后找到需要的次数最多的塔。

代码:

//By Sean Chen
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define maxn 100005
using namespace std;

int h[maxn],b[maxn],c[maxn];

int main()
{
    int n;
    scanf("%d",&n);
    for(int i=0;i<n;i++)
        scanf("%d",&h[i]);
    int pos=0;
    b[0]=1;
    for(int i=0;i<n;i++)
    {
        if(h[pos]+i-pos<h[i])
            b[i]=h[pos]+i-pos;
        else
        {
            b[i]=h[i];
            pos=i;
        }
        b[i]=min(i+1,b[i]);
    }
    c[n-1]=1;
    pos=n-1;
    for(int i=n-2;i>=0;i--)
    {
       if(h[pos]+pos-i<h[i])
           c[i]=h[pos]+pos-i;
       else
       {
           c[i]=h[i];
           pos=i;
       }
       c[i]=min(n-i,c[i]);
    }
    int ans=0;
    for(int i=0;i<n;i++)
    {
        int temp=min(b[i],c[i]);
        ans=max(temp,ans);
    }
    printf("%d\n",ans);
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值