题目:
Input
Output
Sample Input
Sample Output
Signals of most probably extra-terrestrial origin have been received and digitalized by The Aeronautic and Space Administration (that must be going through a defiant phase: "But I want to use feet, not meters!"). Each signal seems
to come in two parts: a sequence of n integer values and a non-negative integer t. We'll not go into details, but researchers found out that a signal encodes two integer values. These can be found as the lower and upper bound of a subrange of the sequence
whose absolute value of its sum is closest to t.
You are given the sequence of n integers and the non-negative target t. You are to find a non-empty range of the sequence (i.e. a continuous subsequence) and output its lower index l and its upper index u. The absolute value of the sum of the values of the sequence from the l-th to the u-th element (inclusive) must be at least as close to t as the absolute value of the sum of any other non-empty range.
You are given the sequence of n integers and the non-negative target t. You are to find a non-empty range of the sequence (i.e. a continuous subsequence) and output its lower index l and its upper index u. The absolute value of the sum of the values of the sequence from the l-th to the u-th element (inclusive) must be at least as close to t as the absolute value of the sum of any other non-empty range.
The input file contains several test cases. Each test case starts with two numbers n and k. Input is terminated by n=k=0. Otherwise, 1<=n<=100000 and there follow n integers with absolute values <=10000 which constitute the sequence.
Then follow k queries for this sequence. Each query is a target t with 0<=t<=1000000000.
For each query output 3 numbers on a line: some closest absolute sum and the lower and upper indices of some range where this absolute sum is achieved. Possible indices start with 1 and go up to n.
5 1 -10 -5 0 5 10 3 10 2 -9 8 -7 6 -5 4 -3 2 -1 0 5 11 15 2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 15 100 0 0
5 4 4 5 2 8 9 1 1 15 1 15 15 1 15方法:看到一连串的数字,分段求和,第一反应就是求前缀和。第二就是尺取法,具体见程序
//By Sean Chen
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
#define M 0x3f3f3f3f //尽可能大,因为把M定义为100000不够大而WA了一次
using namespace std;
struct data{
int sum,pos;
};
data add[100005];
int a,n,k,target,startpos,endpos;
int cmp(data a,data b)
{
return a.sum<b.sum;
}
void swap(int &a,int &b)
{
int temp=a;
a=b;
b=temp;
return;
}
void findans(int t) //尺取法
{
int left=0,right=1,Min=M,temps,ansleft,ansright,ansvalue;
while (left<=n && right<=n && Min!=0)
{
temps=add[right].sum-add[left].sum;
//cout<<temps<<' '<<left<<' '<<right<<endl;
if (abs(temps-t)<Min)
{
ansleft=add[left].pos;
ansright=add[right].pos;
ansvalue=temps;
Min=abs(temps-t);
}
if (temps>t) //现在的和大于目标,左指针右移
left++;
if (temps<t) //现在的和小于目标,右指针右移,和增大
right++;
if (temps==t)
break;
if (left==right) //当两个指针重叠时,右指针右移
right++;
}
if (ansleft>ansright)
swap(ansleft,ansright);
printf("%d %d %d\n",ansvalue,ansleft+1,ansright);
return;
}
int main()
{
scanf("%d%d",&n,&k);
while (n && k)
{
memset(add,0,sizeof(add));
for (int i=1;i<=n;i++)
{
scanf("%d",&a);
add[i].pos=i;
add[i].sum=add[i-1].sum+a; //求前缀和
}
sort(add,add+n+1,cmp); //前缀和从小到大排序
/*for (int i=0;i<=n;i++)
printf("%d ",add[i].sum);
cout<<endl;*/
while (k--)
{
scanf("%d",&target);
findans(target);
}
scanf("%d%d",&n,&k);
}
return 0;
}