弗洛伊德(Floyd)算法

弗洛伊德算法是一种寻找图中顶点间最短路径的算法,与Dijkstra算法不同,它会计算所有顶点间的最短路径。算法通过不断更新中间顶点来找到最短路径,相对于Dijkstra算法更易理解和实现。

1,.弗洛伊德(Floyd)算法介绍

和Dijkstra算法一样,弗洛伊德(Floyd)算法也是一种用于寻找给定的加权图中顶点间最短路径的算法。该算法名称以创始人之一、1978年图灵奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名
弗洛伊德算法(Floyd)计算图中各个顶点之间的最短路径
迪杰斯特拉算法用于计算图中某一个顶点到其他顶点的最短路径。
弗洛伊德算法 VS 迪杰斯特拉算法:迪杰斯特拉算法通过选定的被访问顶点,求出从出发访问顶点到其他顶点的最短路径;弗洛伊德算法中每一个顶点都是出发访问点,所以需要将每一个顶点看做被访问顶点,求出从每一个顶点到其他顶点的最短路径。

这个算法相对于迪杰斯特拉算法容易太多了,相对容易理解

弗洛伊德(Floyd)算法图解分析

设置顶点vi到顶点vk的最短路径已知为Lik,顶点vk到vj的最短路径已知为Lkj,顶点vi到vj的路径为Lij,则vi到vj的最短路径为:min((Lik+Lkj),Lij),vk的取值为图中所有顶点,则可获得vi到vj的最短路径
至于vi到vk的最短路径Lik或者vk到vj的最短路径Lkj,是以同样的方式获得
在这里插入图片描述
我们在这里始终是对这两个数组进行操作的
初始化:
在这里插入图片描述
第一轮循环中,以A(下标为:0)作为中间顶点
将A作为中间顶点情况有

  1. C-A-G [9]
  2. C-A-B [12]
  3. G-A-B [7]
    【即把A作为中间顶点的所有情况都进行遍历, 就会得到更新距离表 和 前驱关系】,
    距离表和前驱关系更新为
    在这里插入图片描述
    代码实现:
public class FloydAlgorithm {

	public static void main(String[] args) {
		// 测试看看图是否创建成功
		char[] vertex = { 'A', 'B', 'C', 'D', 'E', 'F', 'G' };
		//创建邻接矩阵
		int[][] matrix = new int[vertex.length][vertex.length];
		final int N = 65535;
		matrix[0] = new int[] { 0, 5, 7, N, N, N, 2 };
		matrix[1] = new int[] { 5, 0, N, 9, N, N, 3 };
		matrix[2] = new int[] { 7, N, 0, N, 8, N, N };
		matrix[3] = new int[] { N, 9, N, 0, N, 4, N };
		matrix[4] = new int[] { N, N, 8, N, 0, 5, 4 };
		matrix[5] = new int[] { N, N, N, 4, 5, 0, 6 };
		matrix[6] = new int[] { 2, 3, N, N, 4, 6, 0 };
		
		//创建 Graph 对象
		Graph graph = new Graph(vertex.length, matrix, vertex);
		//调用弗洛伊德算法
		graph.floyd();
		graph.show();
	}

}

// 创建图
class Graph {
	private char[] vertex; // 存放顶点的数组
	private int[][] dis; // 保存,从各个顶点出发到其它顶点的距离,最后的结果,也是保留在该数组
	private int[][] pre;// 保存到达目标顶点的前驱顶点

	// 构造器
	/**
	 * 
	 * @param length
	 *            大小
	 * @param matrix
	 *            邻接矩阵
	 * @param vertex
	 *            顶点数组
	 */
	public Graph(int length, int[][] matrix, char[] vertex) {
		this.vertex = vertex;
		this.dis = matrix;
		this.pre = new int[length][length];
		// 对pre数组初始化, 注意存放的是前驱顶点的下标
		for (int i = 0; i < length; i++) {
			Arrays.fill(pre[i], i);
		}
	}


	
	//弗洛伊德算法, 比较容易理解,而且容易实现
	public void floyd() {
		int len = 0; //变量保存距离
		//对中间顶点遍历, k 就是中间顶点的下标 [A, B, C, D, E, F, G] 
		for(int k = 0; k < dis.length; k++) { // 
			//从i顶点开始出发 [A, B, C, D, E, F, G]
			for(int i = 0; i < dis.length; i++) {
				//到达j顶点 // [A, B, C, D, E, F, G]
				for(int j = 0; j < dis.length; j++) {
					len = dis[i][k] + dis[k][j];// => 求出从i 顶点出发,经过 k中间顶点,到达 j 顶点距离
					if(len < dis[i][j]) {//如果len小于 dis[i][j]
						dis[i][j] = len;//更新距离
						pre[i][j] = pre[k][j];//更新前驱顶点
					}
				}
			}
		}
	}
	
		// 显示pre数组和dis数组
	public void show() {

		for (int k = 0; k < dis.length; k++) {
			// 先将pre数组输出的一行
			for (int i = 0; i < dis.length; i++) {
				System.out.print(vertex[pre[k][i]] + " ");
			}
			}
			
			// 输出dis数组的一行数据
	for (int k = 0; k < dis.length; k++) {
			for (int i = 0; i < dis.length; i++) {
				System.out.print("最短路径是" + dis[k][i] );
			}
		}
	}
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值