spark性能调优之使用fastutil优化数据格式与调节数据本地化等待时长

FastUtil是一个高效集合类库,可替代JDK原生集合,减少内存占用,提高Spark任务性能。本文介绍FastUtil特性,如小内存占用、快存取速度、64位集合、高性能IO类及对引用类型的支持。同时探讨FastUtil在Spark中的应用场景,包括优化算子函数、减少内存占用和提升序列化性能。文章还讨论了数据本地化策略,如何通过调节参数优化Spark作业。

fastutil介绍:

fastutil是扩展了Java标准集合框架(Map、List、Set;HashMap、ArrayList、HashSet)的类库,提供了特殊类型的map、set、list和queue;
fastutil能够提供更小的内存占用,更快的存取速度;我们使用fastutil提供的集合类,来替代自己平时使用的JDK的原生的Map、List、Set,好处在于,fastutil集合类,可以减小内存的占用,并且在进行集合的遍历、根据索引(或者key)获取元素的值和设置元素的值的时候,提供更快的存取速度;
fastutil也提供了64位的array、set和list,以及高性能快速的,以及实用的IO类,来处理二进制和文本类型的文件;
fastutil最新版本要求Java 7以及以上版本;

fastutil的每一种集合类型,都实现了对应的Java中的标准接口(比如fastutil的map,实现了Java的Map接口),因此可以直接放入已有系统的任何代码中。
fastutil还提供了一些JDK标准类库中没有的额外功能(比如双向迭代器)。

fastutil除了对象和原始类型为元素的集合,fastutil也提供引用类型的支持,但是对引用类型是使用等于号(=)进行比较的,而不是equals()方法。

fastutil尽量提供了在任何场景下都是速度最快的集合类库。

Spark中应用fastutil的场景:

1、如果算子函数使用了外部变量;那么第一,你可以使用Broadcast广播变量优化;第二,可以使用Kryo序列化类库,提升序列化性能和效率;第三,如果外部变量是某种比较大的集合,那么可以考虑使用fastutil改写外部变量,首先从源头上就减少内存的占用,通过广播变量进一步减少内存占用,再通过Kryo序列化类库进一步减少内存占用。

2、在你的算子函数里,也就是task要执行的计算逻辑里面,如果有逻辑中,出现,要创建比较大的Map、List等集合,可能会占用较大的内存空间,而且可能涉及到消耗性能的遍历、存取等集合操作;那么此时,可以考虑将这些集合类型使用fastutil类库重写,使用了fastutil集合类以后,就可以在一定程度上,减少task创建出来的集合类型的内存占用。避免executor内存频繁占满,频繁唤起GC,导致性能下降。

关于fastutil调优的说明:

fastutil其实没有你想象中的那么强大,也不会跟官网上说的效果那么一鸣惊人。广播变量、Kryo序列化类库、fastutil,都是之前所说的,对于性能来说,类似于一种调味品,烤鸡,本来就很好吃了,然后加了一点特质的孜然麻辣粉调料,就更加好吃了一点。分配资源、并行度、RDD架构与持久化,这三个就是烤鸡;broadcast、kryo、fastutil,类似于调料。

比如说,你的spark作业,经过之前一些调优以后,大概30分钟运行完,现在加上broadcast、kryo、fastutil,也许就是优化到29分钟运行完、或者更好一点,也许就是28分钟、25分钟。

shuffle调优,15分钟;groupByKey用reduceByKey改写,执行本地聚合,也许10分钟;跟公司申请更多的资源,比如资源更大的YARN队列,1分钟。

fastutil的使用:

第一步:在pom.xml中引用fastutil的包
在这里插入图片描述
速度比较慢,可能是从国外的网去拉取jar包,可能要等待5分钟,甚至几十分钟,不等

List => IntList

基本都是类似于IntList的格式,前缀就是集合的元素类型;特殊的就是Map,Int2IntMap,代表了key-value映射的元素类型。除此之外,刚才也看到了,还支持object、reference。

二、数据本地化:五种本地化模式

PROCESS_LOCAL:进程本地化,代码和数据在同一个进程中,也就是在同一个executor中;计算数据的task由executor执行,数据在executor的BlockManager中;性能最好
NODE_LOCAL:节点本地化,代码和数据在同一个节点中;比如说,数据作为一个HDFS block块,就在节点上,而task在节点上某个executor中运行;或者是,数据和task在一个节点上的不同executor中;数据需要在进程间进行传输
NO_PREF:对于task来说,数据从哪里获取都一样,没有好坏之分
RACK_LOCAL:机架本地化,数据和task在一个机架的两个节点上;数据需要通过网络在节点之间进行传输
ANY:数据和task可能在集群中的任何地方,而且不在一个机架中,性能最差

spark.locality.wait,默认是3s

在这里插入图片描述
Spark在Driver上,对Application的每一个stage的task,进行分配之前,都会计算出每个task要计算的是哪个分片数据,RDD的某个partition;Spark的task分配算法,优先,会希望每个task正好分配到它要计算的数据所在的节点,这样的话,就不用在网络间传输数据;

但是呢,通常来说,有时,事与愿违,可能task没有机会分配到它的数据所在的节点,为什么呢,可能那个节点的计算资源和计算能力都满了;所以呢,这种时候,通常来说,Spark会等待一段时间,默认情况下是3s钟(不是绝对的,还有很多种情况,对不同的本地化级别,都会去等待),到最后,实在是等待不了了,就会选择一个比较差的本地化级别,比如说,将task分配到靠它要计算的数据所在节点,比较近的一个节点,然后进行计算。

但是对于第二种情况,通常来说,肯定是要发生数据传输,task会通过其所在节点的BlockManager来获取数据,BlockManager发现自己本地没有数据,会通过一个getRemote()方法,通过TransferService(网络数据传输组件)从数据所在节点的BlockManager中,获取数据,通过网络传输回task所在节点。

对于我们来说,当然不希望是类似于第二种情况的了。最好的,当然是task和数据在一个节点上,直接从本地executor的BlockManager中获取数据,纯内存,或者带一点磁盘IO;如果要通过网络传输数据的话,那么实在是,性能肯定会下降的,大量网络传输,以及磁盘IO,都是性能的杀手

我们什么时候要调节这个参数?

观察日志,spark作业的运行日志,推荐大家在测试的时候,先用client模式,在本地就直接可以看到比较全的日志。
日志里面会显示,starting task。。。,PROCESS LOCAL、NODE LOCAL
观察大部分task的数据本地化级别

如果大多都是PROCESS_LOCAL,那就不用调节了
如果是发现,好多的级别都是NODE_LOCAL、ANY,那么最好就去调节一下数据本地化的等待时长
调节完,应该是要反复调节,每次调节完以后,再来运行,观察日志
看看大部分的task的本地化级别有没有提升;看看,整个spark作业的运行时间有没有缩短

你别本末倒置,本地化级别倒是提升了,但是因为大量的等待时长,spark作业的运行时间反而增加了,那就还是不要调节了

怎么调节?

spark.locality.wait,默认是3s;6s,10s

默认情况下,下面3个的等待时长,都是跟上面那个是一样的,都是3s
spark.locality.wait.process
spark.locality.wait.node
spark.locality.wait.rack

new SparkConf()
.set(“spark.locality.wait”, “10”)

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值