2.1 Time-Domain Representations for LTI System
#
该课程为陈后金教授的信号与系统课程,该课程可在国家精品课程网上下载
#
#This was a note noted by WONG Zinhoo,
Reproduced please specify the Source and the original link.
该笔记由
WONG Zinhoo
记录,转载请注明
#
Traditional Methods
1. 存在经典连续时间系统的系统激励与响应的时域分析方法,其本质是对线性微分方程的求解过程。
2. 对于经典的分时域分析方法不做展开,其具有一定的局限性,这是由微分方程特解的求解难度和其物理特征不明显所决定的。

1st For homogeneous equation
:
, the homogeneous solution is
.


Characteristics equation is:

Solving the CE get the Characteristic Solution:

So, the homogeneous solution is

2nd For Non-homogeneous equation
:
, the particular solution is
.


Suppose the particular solution is


Inverse obtained the c=1/3.
3rd Complete Solution:
Complete Solution = homogeneous solution + particular solution

Inverse obtained the

Solution:

Response of LTI
1. Zero-input Response:


The Zero-input Response of
is
:


Characteristic Function:

Characteristic Solution:

So:

and,

So:

结论:一旦系统的微分方程确定了,那么该系统的零输入响应的形式就确定了,且该系统的零输入响应由方程的特征根决定。
2. Zero-state Response:

原理:将任意系统信号分解为冲激信号然后以卷积求解零状态响应。
3. Impulse response
冲激响应:

给予系统一个单位脉冲激励所得到的响应:

冲激平衡法求解
h(t):
Exp 1.
System,

Find the solution of pulse response.
解


h(t)
回代系统:
A=1
解得:
h(t)=e^-3t
Exp 2.

本质上是解二阶非齐次微分方程。
4. Step response
阶跃响应



本质上是变上限积分函数关系。
5. Question
System have a step response as pic<1> when the input is step signal u(t). What’s the function f(t) of input signal when the output like pic<2>?


Pic<1>
G(t)
单位阶跃响应
Pic<2> h(t)
冲激响应
解:
f(t)= g(t)-2g(t-1)-g(t-2)
-------------------------------------------------------------------------------------------------------------------------------------------------
Email :
zihaowang@live.cn
Facebook:
http://www.facebook.com/zinhoowong
twitter:
https://twitter.com/WongZinhoo