About LFU cache and LRU cache

本文介绍如何实现LRU(最近最少使用)和LFU(最不常用)缓存算法。通过C++代码详细解释了两种缓存机制的工作原理,包括get和set操作的具体实现。对于LRU缓存,采用双向链表和哈希表来存储键值对并维护访问顺序;而对于LFU缓存,则需要额外跟踪每个元素的使用频率。

LRU Cache

Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and set.

get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
set(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.

To achieve the functions mentioned in LRU description, we would use a list to store pair(key, value), because we want these pairs arranged by time; using list enable us to alter the order of pairs in constant time.

class LRUCache{
public:
    LRUCache(int capacity) {
        this->capacity = capacity;
    }

    int get(int key) {
        if(table.find(key) == table.end())
            return -1;
        else{
            timeList.splice(timeList.begin(), timeList, table.find(key)->second);
            return table.find(key)->second->second;
        }
    }

    void set(int key, int value) {
        if(table.find(key) != table.end()){
            timeList.splice(timeList.begin(), timeList, table.find(key)->second);
            table.find(key)->second->second = value;
            return;
        }
        if(table.size() == capacity){
            table.erase(timeList.back().first);
            timeList.pop_back();
        }
        timeList.emplace_front(key, value);
        table[key] = timeList.begin();
    }
private:
    unordered_map<int, list<pair<int,int>>::iterator> table;
    size_t capacity;
    list<pair<int,int>> timeList;
};

LFU Cache

Consider this:

pairIdx:(key,<value,frequency>)

freqIdx:(freq,list<key>)

listIdx:(key,address(key))

At the beginning, I thought pairIdx() and freqIdx() is enough, but then I discover that the erase() operation in list only takes a pointer as argument. Thus, a new map called listIdx is added, which is to store the address of each key in the list.
class LFUCache {
public:
    LFUCache(int capacity) {
        this->capacity = capacity;
        size = 0;
    }

    int get(int key) {
        if(pairIdx.find(key) == pairIdx.end())
            return -1;
        else{
            freqIdx[pairIdx[key].second].erase(listIdx[key]);
            pairIdx[key].second++;
            freqIdx[pairIdx[key].second].push_back(key);
            listIdx[key] = --freqIdx[pairIdx[key].second].end();
            if(freqIdx[minFreq].size() == 0)
                minFreq = pairIdx[key].second;
            return pairIdx[key].first;
        }
    }

    void set(int key, int value) {
        //  Set
        if(capacity <= 0)   return;
        if(pairIdx.find(key) != pairIdx.end()){
            pairIdx[key].first = value; //  Change value
            //  Change freq
            freqIdx[pairIdx[key].second].erase(listIdx[key]);
            pairIdx[key].second++;
            freqIdx[pairIdx[key].second].push_back(key);
            if(freqIdx[minFreq].size() == 0)
                minFreq = pairIdx[key].second;
            //  Change pointer to key in list
            listIdx[key] = --freqIdx[pairIdx[key].second].end();
            return;
        }
        //  Delete
        if(size >= capacity){
            pairIdx.erase(freqIdx[minFreq].front());
            listIdx.erase(freqIdx[minFreq].front());
            freqIdx[minFreq].pop_front();
            size--;
        }
        //  Insert
        minFreq = 1;
        pairIdx[key] = {value, 1};
        freqIdx[1].push_back(key);
        listIdx[key] = --freqIdx[1].end();
        size++;
    }
private:
    unordered_map<int, pair<int, int>> pairIdx;
    unordered_map<int, list<int>::iterator> listIdx;
    unordered_map<int, list<int>> freqIdx;
    int capacity, minFreq, size;
};
【复现】并_离网风光互补制氢合成氨系统容量-调度优化分析(Python代码实现)内容概要:本文围绕“并_离网风光互补制氢合成氨系统容量-调度优化分析”的主题,提供了基于Python代码实现的技术研究与复现方法。通过构建风能、太阳能互补的可再生能源系统模型,结合电解水制氢与合成氨工艺流程,对系统的容量配置与运行调度进行联合优化分析。利用优化算法求解系统在不同运行模式下的最优容量配比和调度策略,兼顾经济性、能效性和稳定性,适用于并网与离网两种场景。文中强调通过代码实践完成系统建模、约束设定、目标函数设计及求解过程,帮助读者掌握综合能源系统优化的核心方法。; 适合人群:具备一定Python编程基础和能源系统背景的研究生、科研人员及工程技术人员,尤其适合从事可再生能源、氢能、综合能源系统优化等相关领域的从业者;; 使用场景及目标:①用于教学与科研中对风光制氢合成氨系统的建模与优化训练;②支撑实际项目中对多能互补系统容量规划与调度策略的设计与验证;③帮助理解优化算法在能源系统中的应用逻辑与实现路径;; 阅读建议:建议读者结合文中提供的Python代码进行逐模块调试与运行,配合文档说明深入理解模型构建细节,重点关注目标函数设计、约束条件设置及求解器调用方式,同时可对比Matlab版本实现以拓宽工具应用视野。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值