Description
Given a 2D binary matrix filled with 0’s and 1’s, find the largest square containing only 1’s and return its area.
Code
Always remember to get rid of invalid input and deal with corner cases in the first place. We have the following state equations:
P[0][j] = matrix[0][j] (topmost row);
P[i][0] = matrix[i][0] (leftmost column);
For i > 0 and j > 0:
if matrix[i][j] = 0, P[i][j] = 0;
if matrix[i][j] = 1, P[i][j] = min(P[i - 1][j], P[i][j - 1], P[i - 1][j - 1]) + 1.
Thus, we have the following straightforward code:
int maximalSquare(vector<vector<char>>& matrix) {
int m = matrix.size();
if (!m) return 0;
int n = matrix[0].size();
vector<vector<int> > size(m, vector<int>(n, 0));
int maxsize = 0;
for (int j = 0; j < n; j++) {
size[0][j] = matrix[0][j] - '0';
maxsize = max(maxsize, size[0][j]);
}
for (int i = 1; i < m; i++) {
size[i][0] = matrix[i][0] - '0';
maxsize = max(maxsize, size[i][0]);
}
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
if (matrix[i][j] == '1') {
size[i][j] = min(size[i - 1][j - 1], min(size[i - 1][j], size[i][j - 1])) + 1;
maxsize = max(maxsize, size[i][j]);
}
}
}
return maxsize * maxsize;
}
Actually, space can be saved by using a one-dimension array
```
class Solution {
public:
int maximalSquare(vector<vector<char>>& matrix) {
//Get rid of invalid input
int row = matrix.size();
if(!row)
return 0;
int col = row > 0 ? matrix[0].size() : 0;
vector<int> dp(row+1,0);
int maxsize = 0, pre = 0;
for(int j = 0; j < col; j++)
for(int i = 1; i <= row; i++){
int tmp = dp[i];
if(matrix[i - 1][j] == '1'){
dp[i] = min(dp[i], min(dp[i - 1], pre)) + 1;
maxsize = max(maxsize, dp[i]);
}
else
dp[i] = 0;
pre = tmp;
}
return maxsize * maxsize;
}
};
本文介绍了一种寻找二维二进制矩阵中只包含1的最大正方形的方法,并提供了两种高效的实现方式:一种使用二维动态规划,另一种则通过一维数组优化空间复杂度。
449

被折叠的 条评论
为什么被折叠?



