定义
d
p
[
i
]
[
j
]
dp[i][j]
dp[i][j]为前i列异或和为j的最少改变次数。
这道题细节挺多的,由于本人太懒,不推了!
#include <bits/stdc++.h>
using namespace std;
#define rep(i, x, y) for(int i=(x);i<=(y);++i)
#define dep(i, x, y) for(int i=(x);i>=(y);--i)
const int INF = 0x3f3f3f3f;
const int maxn = 1090;
int g[maxn][maxn];
int dp[maxn][1026];
int s[maxn][maxn];
int main(){
int n, m;
cin >> n >> m;
rep(i, 1, n)
{
rep(j, 1, m)
{
scanf("%d",&g[i][j]);
}
}
unordered_map<int, int> mp;
unordered_map<int, int>::iterator it;
int MIN = INF, Min = INF;
for (int i = 1; i <= m; i++)
rep(j, 0, 1024)
dp[i][j] = INF;
rep(j, 1, n)
{
mp[g[j][1]]++;
}
for (int i = 0; i <= 1024; i++) {
dp[1][i] = n - mp[i];
MIN = min(MIN, dp[1][i]);
}
Min = MIN;
for (int i = 2; i <= m; i++) {
mp.clear();
MIN = INF;
rep(j, 1, n)
{
mp[g[j][i]]++;
}
for (int j = 0; j < 1024; j++) {
for (it = mp.begin(); it != mp.end(); it++) {
int X = it->first;
int num = it->second;
dp[i][j ^ X] = min(min(dp[i][j ^ X], dp[i - 1][j] + n - num), Min + n);
MIN = min(dp[i][j ^ X], MIN);
}
}
Min = MIN;
}
cout << dp[m][0] << endl;
}
本文介绍了一种使用二维动态规划解决特定矩阵问题的方法,通过定义状态dp[i][j]来记录前i列异或和为j的最少改变次数,最终求得将矩阵调整为目标异或和所需的最小操作数。
1203

被折叠的 条评论
为什么被折叠?



