A - Sasha and His Trip 贪心

Sasha计划驾车穿越国家,访问所有城市。每个城市间的距离相等,且所有道路都是单向的。Sasha的车辆每行驶一公里消耗一定量的燃料,油箱容量有限。每个城市设有加油站,燃料价格不一。本篇探讨如何在Sasha的旅程中,通过最优加油策略,以最少的花费完成全程。

Sasha is a very happy guy, that’s why he is always on the move. There are cities in the country where Sasha lives. They are all located on one straight line, and for convenience, they are numbered from to in increasing order. The distance between any two adjacent cities is equal to kilometer. Since all roads in the country are directed, it’s possible to reach the city from the city only if .

Once Sasha decided to go on a trip around the country and to visit all cities. He will move with the help of his car, Cheetah-2677. The tank capacity of this model is liters, and it spends exactly liter of fuel for kilometer of the way. At the beginning of the journey, the tank is empty. Sasha is located in the city with the number and wants to get to the city with the number . There is a gas station in each city. In the -th city, the price of liter of fuel is dollars. It is obvious that at any moment of time, the tank can contain at most liters of fuel.

Sasha doesn’t like to waste money, that’s why he wants to know what is the minimum amount of money is needed to finish the trip if he can buy fuel in any city he wants. Help him to figure it out!
Input
The first line contains two integers and (, ) — the number of cities in the country and the capacity of the tank
outup
Print one integer — the minimum amount of money that is needed to finish the trip.
Input
4 2
Output
4
Input
7 6
Output
6

大概思路就是从第一个城市开始走 首先查看油量是否足够走完以后所有城市 不够加满 直到到达其中一个城市加入油量刚好走完后面的城市

在这里#include<stdio.h>
using namespace std;
int main() 
{
	int n,v;
	while(scanf("%d%d",&n,&v)!=EOF)
	{
		int a[n],c=1;                
		for(int i=0;i<n;i++)
		{
			a[i]=c;
			c++;
		}
		int x=0,way=n-1  ,gass =0;         //price least way station 
		 for( int i=0;gass<way;i++,way=n-i-1)
		 {
		 	way=n-i-1;
		 	while(gass<v)
		     {
		     	gass++,x+=a[i];
		     	if(gass==way)
		     	break;
			 }
			 if(gass==way)
			 break;
			 gass--;
		  } 
		  printf("%d",x);
		
	 } 
 } 插入代码片
基于蒙特卡洛法的规模化电动车有序充放电及负荷预测(Python&Matlab实现)内容概要:本文围绕“基于蒙特卡洛法的规模化电动车有序充放电及负荷预测”展开,结合Python和Matlab编程实现,重点研究大规模电动汽车在电网中的充放电行为建模与负荷预测方法。通过蒙特卡洛模拟技术,对电动车用户的出行规律、充电需求、接入时间与电量消耗等不确定性因素进行统计建模,进而实现有序充放电策略的优化设计与未来负荷曲线的精准预测。文中提供了完整的算法流程与代码实现,涵盖数据采样、概率分布拟合、充电负荷聚合、场景仿真及结果可视化等关键环节,有效支撑电网侧对电动车负荷的科学管理与调度决策。; 适合人群:具备一定电力系统基础知识和编程能力(Python/Matlab),从事新能源、智能电网、交通电气化等相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①研究大规模电动车接入对配电网负荷特性的影响;②设计有序充电策略以平抑负荷波动;③实现基于概率模拟的短期或长期负荷预测;④为电网规划、储能配置与需求响应提供数据支持和技术方案。; 阅读建议:建议结合文中提供的代码实例,逐步运行并理解蒙特卡洛模拟的实现逻辑,重点关注输入参数的概率分布设定与多场景仿真的聚合方法,同时可扩展加入分时电价、用户行为偏好等实际约束条件以提升模型实用性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值