D - Five, Five Everywhere
Time limit : 2sec / Memory limit : 256MB
Score: 400 points
Problem Statement
Print a sequence a1,a2,…,aNa1,a2,…,aN whose length is NN that satisfies the following conditions:
- (1≤i≤N1≤i≤N) is a prime number at most 5555555555.
- The values of a1,a2,…,aNa1,a2,…,aN are all different.
- In every choice of five different integers from a1,a2,…,aNa1,a2,…,aN, the sum of those integers is a composite number.
If there are multiple such sequences, printing any of them is accepted.
Notes
An integer NN not less than is called a prime number if it cannot be divided evenly by any integers except 11 and , and called a composite number otherwise.
Constraints
- NN is an integer between and 5555 (inclusive).
Input
Input is given from Standard Input in the following format:
N
Output
Print NN numbers in a line, with spaces in between.
Sample Input 1
5Sample Output 1
3 5 7 11 31Let us see if this output actually satisfies the conditions.
First, 3, 5, 7, 11 and 31 are all different, and all of them are prime numbers.
The only way to choose five among them is to choose all of them, whose sum is a1+a2+a3+a4+a5=57a1+a2+a3+a4+a5=57, which is a composite number.
There are also other possible outputs, such as2 3 5 7 13,11 13 17 19 31and7 11 5 31 3.Sample Input 2
6Sample Output 2
2 3 5 7 11 132,3,5,7,11,132,3,5,7,11,13 are all different prime numbers.
2+3+5+7+11=282+3+5+7+11=28 is a composite number.
2+3+5+7+13=302+3+5+7+13=30 is a composite number.
2+3+5+11+13=342+3+5+11+13=34 is a composite number.
2+3+7+11+13=362+3+7+11+13=36 is a composite number.
2+5+7+11+13=382+5+7+11+13=38 is a composite number.
3+5+7+11+13=393+5+7+11+13=39 is a composite number.
Thus, the sequence `2 3 5 7 11 13“ satisfies the conditions.Sample Input 3
8Sample Output 3
2 5 7 13 19 37 67 79
解题思路
比赛时居然没想出来,被可恶的样例解释带偏了…
要求给出一个全是质数的数列,使得任取五个数的和都是合数
既然这样,我们不妨让所有数的个位都是1,很容易证明在 [5,55555][5,55555] 中可以找出至少 5555 个这样的个位是1的质数
那么,任意5个数的和的个位就一定是5了——那就一定是合数了
oops…
Code
#include<cstdio> using namespace std; int n; bool isPrime(int x){ for(int i = 2; i * i <= x; i++) if(x % i == 0) return false; return true; } int main(){ scanf("%d", &n); for(int i = 11; n; i += 10){ if(isPrime(i)){ printf("%d ", i); n--; } } return 0; }
1018

被折叠的 条评论
为什么被折叠?



