Tensorflow 合并通道及加载子模型

在Tensorflow中实现DNN网络时,遇到如何合并两个子模型输出到同一通道以及如何加载预训练模型部分参数的问题。本文介绍了使用`tf.concat()`函数进行通道合并,并详细阐述了保持变量名一致来加载预训练模型参数的方法,以初始化新模型的相应层。此方法可作为Tensorflow应用中的参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近在使用Tensorflow 实现DNN网络时,遇到一些问题。目前网上关于Tensorflow的资料还比较少,现把问题和解决方法写出来,仅供参考。

(1)将两个子模型的输出合并到一个通道,例如同时连接到一个全连接层如图


合并方法为 tf.concat()函数。此函数需要两个个参数 concat(0或1,[合并节点1,合并节点2] )。0 或 1 代表节点合并的方式:0 代表合并后列相同,行增加;1 代表合并后行相同,列增加。

上图所示合并方法为: X_20 = tf.concat(1, [X_top, X_down]);


(2) 加载预训练好模型的部分参数。例如训练完成了一个五层网络,现在需要训练好一个七层网络,使用已训练好的五层网络参数初始化七层网络的前五层。

首先,五层网络保存模型时的参数变量名要和七层网络的需要初始化的参数变量名保持一致。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值