EfficientDet: https://arxiv.org/pdf/2011.08036.pdf
YOLOv1: https://arxiv.org/pdf/1506.02640.pdf
YOLOv2: https://arxiv.org/pdf/1612.08242.pdf
YOLOv3: https://arxiv.org/pdf/2011.08036.pdf
YOLOv4: https://github.com/AlexeyAB/darknet
YOLOv4-Scaled: https://github.com/WongKinYiu/ScaledYOLOv4
YOLO-PPv2: https://arxiv.org/pdf/2104.10419.pdf
YOLOv5: https://arxiv.org/pdf/2104.10419.pdf
YOLOX: https://github.com/Megvii-BaseDetection/YOLOX
YOLOR: https://github.com/WongKinYiu/yolor
YOLOF: https://arxiv.org/pdf/2103.09460.pdf
YOLOS: https://arxiv.org/pdf/2106.00666.pdf
YOLOP: https://arxiv.org/pdf/2108.11250.pdf
YOLOV6: https://mp.weixin.qq.com/s/RrQCP4pTSwpTmSgvl

该博客提供了YOLO(You Only Look Once)系列目标检测模型的详细资料,包括从YOLOv1到YOLOV7的演变。读者可以查阅各版本的论文链接,了解其改进和创新,以及最新的YOLOV6和YOLOV7的实现和研究进展。
最低0.47元/天 解锁文章
789

被折叠的 条评论
为什么被折叠?



