We call a figure made of points is left-right symmetric as it is possible to fold the sheet of paper along a vertical line and to cut the figure into two identical halves.For example, if a figure exists five points, which respectively are (-2,5),(0,0),(2,3),(4,0),(6,5). Then we can find a vertical line x = 2 to satisfy this condition. But in another figure which are (0,0),(2,0),(2,2),(4,2), we can not find a vertical line to make this figure left-right symmetric.Write a program that determines whether a figure, drawn with dots, is left-right symmetric or not. The dots are all distinct.
The input consists of T test cases. The number of test cases T is given in the first line of the input file. The first line of each test case contains an integer N, where N (1 <=N <= 1, 000) is the number of dots in a figure. Each of the following N lines contains the x-coordinate and y-coordinate of a dot. Both x-coordinates and y-coordinates are integers between −10, 000 and 10, 000, both inclusive.
Print exactly one line for each test case. The line should contain 'YES' if the figure is left-right symmetric,and 'NO', otherwise.
3 5 -2 5 0 0 6 5 4 0 2 3 4 2 3 0 4 4 0 0 0 4 5 14 6 10 5 10 6 14
YES NO YES
题目大意:在一个平面上有n个点,判断这n个点是否对称。
刚开始我也没有思路,看了一下别人的代码才知道原来还要用到排序。
思路:先确定图的对称轴,然后将点从左到右和从右到左排序,检查对应位置上的点即可。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
const int N=1000+5;
struct node
{
int x;
int y;
}a[N],b[N];
bool cmp0(node w,node h)
{
if(w.x==h.x)
return w.y<h.y;
else
return w.x<h.x;
}
bool cmp1(node w,node h)
{
if(w.x==h.x)
return w.y<h.y;
else
return w.x>h.x;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int n,sum,flag=1;
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
cin>>a[i].x>>a[i].y;
b[i].x=a[i].x;
b[i].y=a[i].y;
}
sort(a+1,a+n+1,cmp0);
sort(b+1,b+n+1,cmp1);
sum=a[1].x+b[1].x;
for(int i=1;i<=n;i++)
{
if(a[i].x+b[i].x!=sum||a[i].y!=b[i].y)
{
flag=0;
break;
}
}
if(flag)
printf("YES\n");
else
printf("NO\n");
}
return 0;
}