Balanced Binary Tree
Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as:
a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
解析
判断一颗树是不是平衡树,获得左右子树的高度,绝对值不大于1就好。
解法1:递归
直接每个节点递归判断左右子树高度差绝对值。
class Solution {
public:
bool isBalanced(TreeNode* root) {
if(!root) return true;
if(abs(height(root->left) - height(root->right)) > 1) return false;
return isBalanced(root->left) && isBalanced(root->right);
}
int height(TreeNode* root){
if(!root) return 0;
return max(height(root->left), height(root->right)) + 1;
}
};
解法2:checkdepth判断子树是否平衡
如果子树不平衡,则不计算具体的深度,而是直接返回-1。优化后为:对于每一个节点,我们通过checkDepth方法递归获得左右子树的深度,如果子树是平衡的,则返回真实的深度,若不平衡,直接返回-1,此方法时间复杂度O(N),空间复杂度O(H)。
class Solution {
public:
bool isBalanced(TreeNode* root) {
if(checkdepth(root) == -1) return false;
else return true;
}
int checkdepth(TreeNode* root){
if(!root) return 0;
int left = checkdepth(root->left);
if(left == -1) return -1;
int right = checkdepth(root->right);
if(right == -1) return -1;
if(abs(left - right) > 1) return -1;
else return 1 + max(left, right);
}
};