C. Pride
time limit per test2 seconds
memory limit per test256 megabytes
inputstandard input
outputstandard output
You have an array a with length n, you can perform operations. Each operation is like this: choose two adjacent elements from a, say x and y, and replace one of them with gcd(x, y), where gcd denotes the greatest common divisor.
What is the minimum number of operations you need to make all of the elements equal to 1?
Input
The first line of the input contains one integer n (1 ≤ n ≤ 2000) — the number of elements in the array.
The second line contains n space separated integers a1, a2, …, an (1 ≤ ai ≤ 109) — the elements of the array.
Output
Print -1, if it is impossible to turn all numbers to 1. Otherwise, print the minimum number of operations needed to make all numbers equal to 1.
Examples
input
5
2 2 3 4 6
output
5
input
4
2 4 6 8
output
-1
input
3
2 6 9
output
4
Note
In the first sample you can turn all numbers to 1 using the following 5 moves:
[2, 2, 3, 4, 6].
[2, 1, 3, 4, 6]
[2, 1, 3, 1, 6]
[2, 1, 1, 1, 6]
[1, 1, 1, 1, 6]
[1, 1, 1, 1, 1]
We can prove that in this case it is not possible to make all numbers one using less than 5 moves.
题意是:
给你一个长度为n的数组,让你通过一系列最少的操作,使得这个数组全变为1。
其中的操作是:相邻两个数的最大公因数可以替换其中一个数。
思路:
首先找到通过最少的构造使得两个数的最大公因数为1。
具体实现看代码:
#include<bits/stdc++.h>
using namespace std;
const int N=2e3+10;
#define INF 1<<30
long long int a[N];
int gcd(int m, int n)
{
if(n<m)
{
int t=n;
n=m;
m=t;
}
return (m==0)?n:gcd(n%m, m);
}
int main()
{
int n;
scanf("%d",&n);
long long int mi=INF;
int x=0;
for(int i=0;i<n;i++)
{
scanf("%I64d",&a[i]);
if(a[i]==1)x++;//序列里是否有存在一的情况
}
if(x>=1)//若存在1的情况
{
printf("%d\n",n-x);//则剩下的需要n-x次构造
return 0;
}
else
{
int k=0,c=0,mx=INF;
for(int i=0;i<n;i++)
{
c=a[i];
for(int j=i+1;j<n;j++)
{
c=gcd(c,a[j]);
if(c==1)
{
mx=min(mx,j-i);//j-i为需要多少次构造能够得到两个数的最大公约数为1
break;
}
}
}
// printf("%d\n",mx);
if(mx==INF)printf("-1\n");
else
printf("%d\n",mx+(n-1)); //已经构造出一个1剩余的需要n-1次构造
}
}