换编译器了O(∩_∩)O

博客提及了开发工具的转变,前端从DW转向HBuilder,后台从eclipse转向ideal,反映了开发工具选择的变化。

前端:DW->HBuilder
后台:eclipse->ideal

I Boxes(c++题解,代码禁止有注释,本题测试数据极大,极易超时,极易0分,极易内存超限,极易段错误与编译错误!) 作者 北京大学 单位 北京大学 Given n points in three-dimensional space, the task is to partition them into some mutually disjoint subsets S 1 ​ ,S 2 ​ ,…,S k ​ . For any i  =j, the partition must satisfy at least one of the following three conditions: volume(conv(S i ​ )∩conv(S j ​ ))=0, conv(S i ​ )⊆conv(S j ​ ), conv(S j ​ )⊆conv(S i ​ ). Here, the convex hull conv(S i ​ ) of a subset S i ​ is defined as: conv(S i ​ )={∑ p∈S i ​ ​ λ p ​ p∣λ p ​ ≥0,∑ p∈S i ​ ​ λ p ​ =1}. The goal is to maximize 6∑ i=1 k ​ volume(conv(S i ​ )). The challenge is to find the optimal partition that achieves the maximum total volume of the convex hulls while ensuring these constraints are met. Input: There are multiple test cases in a single test file. The first line of the input contains a single integer T (1≤T≤3000), indicating the number of test cases. For each test case, the first line of the input contains one integer n (4≤n≤3000) --- the number of points. The following n lines each contain three integers x i ​ , y i ​ , and z i ​ (0≤x i ​ ,y i ​ ,z i ​ ≤10 6 ), representing the coordinates of point p i ​ in three-dimensional space. It's guaranteed that no four points are coplanar, and the sum of n over all test cases does not exceed 3000. Output: For each test case, output a single integer --- the maximum sum of volumes of the convex hulls under the given conditions, multiplied by 6. It can be proven that this value is always an integer. Sample Input: 2 4 0 0 1 0 0 2 0 1 1 1 1 1 10 2 6 3 2 9 0 2 1 0 3 7 3 0 5 6 10 9 2 4 4 2 8 5 2 4 6 9 6 7 5 Sampe Output: 1 943 代码长度限制 16 KB Java (javac) 时间限制 3000 ms 内存限制 1024 MB Python (python3) 时间限制 3000 ms 内存限制 1024 MB Python (pypy3) 时间限制 3000 ms 内存限制 1024 MB 其他编译器 时间限制 1000 ms 内存限制 1024 MB 栈限制 131072 KB
12-09
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值