有监督学习、无监督学习、分类、聚类、回归等概念

有监督学习、无监督学习、分类、聚类、回归等概念

这篇是很久之前写的了.. 后来才开始上 Andrew Ng 老师的 MOOC,发现其实老师讲得很好了,建议有时间看看他的《Machina Learning》,只看第一节课就可以很了解这些概念了。

主要内容

  1. 有监督学习、无监督学习、分类、聚类、回归等概念

有监督学习、无监督学习、分类、聚类、回归等概念

这里举一个给书本分类的例子。部分参考 什么是无监督学习? - 王丰的回答 - 知乎

  1. 特征(feature)

    数据的特征。

    书的内容。

  2. 标签(label)

    数据的标签。

    书属于的类别,例如“计算机”“图形学”“英文书”“教材”等。

  3. 学习(learning)

    将很多数据丢给计算机分析,以此来训练该计算机,培养计算机给数据分类的能力。换句话说,学习指的就是找到特征与标签的映射(mapping)关系。这样当有特征而无标签的未知数据输入时,我们就可以通过已有的关系得到未知数据标签。

    把很多书交给一个学生,培养他给书本分类的能力。

  4. 有监督学习(supervised learning)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值