2023牛客暑期多校训练营6 A-Tree (kruskal重构树))

题目大意

翻译
( 0 ≤ a i ≤ 1 ) , ( 1 ≤ c o s t i ≤ 1 0 9 ) (0\leq a_i\leq 1),(1 \leq cost_i\leq 10^9) (0ai1),(1costi109)

题解

提供一种新的算法,kruskal重构树。
该算法重新构树,按边权排序每一条边后,
新建一个点为“两边的节点所在最大节点”的父节点,该点点权为该边边权。
该树有一些特征:
①:是一个二叉树。
③:原节点全部为叶节点。
②:两个节点的LCA的点权就是其原最短路径的最大边权。
具体 Kruskal 算法学习
建树可以用并查集计算。
了解了这个算法我们再看问题,要求最大边权,这点可以用kruskal维护。
对于某个不为叶节点的节点 x x x ,它左儿子与右儿子匹配的黑白节点的最大边权显然为 w x w_x wx
显然的,我们可以枚举左右儿子节点中的黑白节点个数,乘上点权,即为该点的贡献。
我们发现答案可以通过 d f s dfs dfs 顺序从下往上来求解,且不会造成前效性,所以树形DP可以很好的解决这道题。
d p x , b dp_{x,b} dpx,b 表示在 x x x 的子树内有 b b b 个黑色节点的最优解。
d p x , b = m a x ( d p s o n , b l a c k 1 + d p s o n , b 2 + w x ∗ ( b l a c k 1 ∗ w h i t e 2 + b l a c k 2 ∗ w h i t e 1 ) ) dp_{x,b}=max(dp_{son,black1}+dp_{son,b2}+w_x*(black1*white2+black2*white1)) dpx,b=max(dp

### 暑期训练营的适合水平分析 暑期训练营是一项面向算法竞赛爱好者的系列比赛,主要目的是为选手提供一个练习和提升的机会[^1]。该训练营通常吸引了来自全国各地的编程爱好者以及准备参加 ACM-ICPC 或其他算法竞赛的学生参与。根据以往的经验,以下是对适合水平的详细分析: #### 1. **基础要求** 训练营中的题目难度跨度较大,从入门级到高难度均有覆盖。对于新手选手来说,如果具备一定的算法基础(如掌握基本的数据结构、排序算法、搜索算法等),可以尝试参与并从中学习[^2]。 #### 2. **中级选手** 中级水平的选手通常已经熟练掌握了常见的算法模板,例如动态规划、图论(最短路径、最小生成树等)、字符串匹配等。这类选手可以通过训练营中的中等难度题目进一步巩固知识,并挑战更高难度的问题以提升能力[^3]。 #### 3. **高级选手** 高级水平的选手通常是 ACM-ICPC 区域赛或更高级别比赛的参赛者。他们能够快速解决大部分常规问题,并专注于研究复杂算法和优化技巧。对于这些选手,训练营是一个检验自身实力、发现不足的好机会[^4]。 #### 4. **团队协作能力** 值得注意的是,训练营不仅考察个人能力,还强调团队合作的重要性。许题目需要名队员分工合作才能高效完成。因此,即使是高水平的个人选手,也需要通过训练营来磨练与队友的配合能力[^5]。 ```python # 示例代码:计算最短路径(Dijkstra算法) import heapq def dijkstra(graph, start): n = len(graph) dist = [float('inf')] * n dist[start] = 0 heap = [(0, start)] while heap: d, u = heapq.heappop(heap) if d > dist[u]: continue for v, w in graph[u]: if dist[u] + w < dist[v]: dist[v] = dist[u] + w heapq.heappush(heap, (dist[v], v)) return dist ``` 上述代码展示了图论中经典的 Dijkstra 算法实现,这是训练营中可能出现的基础知识点之一。 ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值