(萌O(∩_∩)O)哈希知识点小结

本文详细介绍了哈希函数的构造方法,包括直接定址法、除法散列法、平方散列法和斐波那契散列法,并探讨了处理哈希冲突的线性再散列法、非线性再散列法和链地址法。通过实例演示了不同方法的应用场景及优劣。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

噶呜~先来了解一下什么是哈希吧?

    当我们要在一堆东西中找到想要的那一个东西,我们常常通过比较来找,理想的情况是不经过任何比较,一次就能找到,怎么才能做到这样呢?那就在记录的储存位置和他的关键字之间建立一个确定的对应关系,我们称这种对应关系为哈希函数~小盆友们应该对哈希有了一个初步的印象了吧?其实,哈希函数就是一个映像,设定很灵活,只要使任何关键字由这个哈希函数所得的哈希函数值都落在一定范围内即可。当然,不同的关键字可能得到同一哈希地址,这就出现了所谓的冲突,至于怎么解决这种冲突,稍后就会了解到。

如何构造哈希函数呢?

    1.直接定址法:取关键字或关键字的某个线性函数值为哈希地址,这种方法所得的地址集合和关键自己和大小相同,因此,对不同的关键字不会发生冲突,但实际应用中使用很少。

    2.除法散列法最直观的一种,公式:index = value % 16,学过汇编的都知道,求模数其实是通过一个除法运算得到的,所以叫“除法散列法”。

    3.平方散列法求index是非常频繁的操作,而乘法的运算要比除法来得省时(对现在的CPU来说,估计我们感觉不出来),所以我们考虑把除法换成乘法和一个位移操作。公式:index = (value * value) >> 28   右移,除以2^28。记法:左移变大,是乘。右移变小,是除。如果数值分配比较均匀的话这种方法能得到不错的结果,但我上面画的那个图的各个元素的值算出来的index都 是0——非常失败。也许你 还有个问题,value如果很大,value * value不会溢出吗?答案是会的,但我们这个乘法不关心溢出,因为我们根本不是为了获取相乘结果,而是为了获取index。

    4.斐波那契(Fibonacci)散列法,平方散列法的缺点是显而易见的,所以我们能不能找出一个理想的乘数,而不是拿value本身当作乘数呢?答案是肯定的。

       1,对于16位整数而言,这个乘数是40503

       2,对于32位整数而言,这个乘数是2654435769

       3,对于64位整数而言,这个乘数是11400714819323198485

这几个“理想乘数”是如何得出来的呢?这跟一个法则有关,叫黄金分割法则,而描述黄金分割法则的最经典表达式无疑就是著名的斐波那契数列,即如此形 式的序列:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946,…。另外,斐波那契数列的值和太阳系八大行星的轨道半径的比例出奇吻合。对我们常见的32位整数而言,公式:index = (value * 2654435769) >> 28.

     暂时就写这么多了,有不足的还望各位大神多多补充~!

处理冲突的方法:

(1)线性再散列法,简单的按顺序遍历hash表,寻找下一个可用的槽;

(2)非线性再散列法,计算一个新的hash值;

(3)链地址法。

前两种看文字小盆友们应该都能明白了吧?重点讲讲第三种链地址法:

    链地址法解决冲突的做法是:如果哈希表空间为 0 ~ m - 1 ,设置一个由 m 个指针分量组成的一维数组 ST[ m ], 凡哈希地址为 i 的数据元素都插入到头指针为 ST[ i ] 的链表中。这种方法有点近似于邻接表的基本思想,且这种方法适合于冲突比较严重的情况。 

 例: 设有 8 个元素 { a,b,c,d,e,f,g,h } ,采用某种哈希函数得到的地址分别为: {0 , 2 , 4 , 1 , 0 , 8 , 7 , 2} ,当哈希表长度为 10 时,采用链地址法解决冲突的哈希表如下图所示。

 

大家发现萌点所在了吗?orz~~只是小小总结一下,还有很多不足,多多包涵

————Anonymous.PJQ
内容概要:本文详细介绍了扫描单分子定位显微镜(scanSMLM)技术及其在三维超分辨体积成像中的应用。scanSMLM通过电调透镜(ETL)实现快速轴向扫描,结合4f检测系统将不同焦平面的荧光信号聚焦到固定成像面,从而实现快速、大视场的三维超分辨成像。文章不仅涵盖了系统硬件的设计与实现,还提供了详细的软件代码实现,包括ETL控制、3D样本模拟、体积扫描、单分子定位、3D重建和分子聚类分析等功能。此外,文章还比较了循环扫描与常规扫描模式,展示了前者在光漂白效应上的优势,并通过荧光珠校准、肌动蛋白丝、线粒体网络和流感A病毒血凝素(HA)蛋白聚类的三维成像实验,验证了系统的性能和应用潜力。最后,文章深入探讨了HA蛋白聚类与病毒感染的关系,模拟了24小时内HA聚类的动态变化,提供了从分子到细胞尺度的多尺度分析能力。 适合人群:具备生物学、物理学或工程学背景,对超分辨显微成像技术感兴趣的科研人员,尤其是从事细胞生物学、病毒学或光学成像研究的科学家和技术人员。 使用场景及目标:①理解和掌握scanSMLM技术的工作原理及其在三维超分辨成像中的应用;②学习如何通过Python代码实现完整的scanSMLM系统,包括硬件控制、图像采集、3D重建和数据分析;③应用于单分子水平研究细胞内结构和动态过程,如病毒入侵机制、蛋白质聚类等。 其他说明:本文提供的代码不仅实现了scanSMLM系统的完整工作流程,还涵盖了多种超分辨成像技术的模拟和比较,如STED、GSDIM等。此外,文章还强调了系统在硬件改动小、成像速度快等方面的优势,为研究人员提供了从理论到实践的全面指导。
内容概要:本文详细介绍了基于Seggiani提出的渣层计算模型,针对Prenflo气流床气化炉中炉渣的积累和流动进行了模拟。模型不仅集成了三维代码以提供气化炉内部的温度和浓度分布,还探讨了操作条件变化对炉渣行为的影响。文章通过Python代码实现了模型的核心功能,包括炉渣粘度模型、流动速率计算、厚度更新、与三维模型的集成以及可视化展示。此外,还扩展了模型以考虑炉渣组成对特性的影响,并引入了Bingham流体模型,更精确地描述了含未溶解颗粒的熔渣流动。最后,通过实例展示了氧气-蒸汽流量增加2%时的动态响应,分析了温度、流动特性和渣层分布的变化。 适合人群:从事煤气化技术研究的专业人士、化工过程模拟工程师、以及对工业气化炉操作优化感兴趣的科研人员。 使用场景及目标:①评估不同操作条件下气化炉内炉渣的行为变化;②预测并优化气化炉的操作参数(如温度、氧煤比等),以防止炉渣堵塞;③为工业气化炉的设计和操作提供理论支持和技术指导。 其他说明:该模型的实现基于理论公式和经验数据,为确保模型准确性,实际应用中需要根据具体气化炉的数据进行参数校准。模型还考虑了多个物理场的耦合,包括质量、动量和能量守恒方程,能够模拟不同操作条件下的渣层演变。此外,提供了稳态求解器和动态模拟工具,可用于扰动测试和工业应用案例分析。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值