MVBench多模态大模型视频理解能力基准 | CVPR Highlight

由上海人工智能实验室(上海AI实验室)、中国科学院深圳先进技术研究院、中国科学院大学、香港大学、复旦大学、南京大学计算机软件新技术国家重点实验室联合提出的多模态大模型视频理解能力基准MVBench,入选本届CVPR Highlight论文名单。

联合团队在题为《MVBench: A Comprehensive Multi-modal Video Understanding Benchmark》的论文中提出的MVBench,由20项复杂视频任务组成,用于全面评测现有多模态模型的视频理解能力。同时,基于对已有多模态模型的缺陷分析,提出了更强大的基线模型VideoChat2。所有代码、模型权重、训练数据、评测数据均已开源。

图片

论文链接:

https://arxiv.org/pdf/2311.17005

开源链接:

https://github.com/OpenGVLab/Ask-Anything/tree/main/video_chat2

在线demo体验:

https://vchat.opengvlab.com

评测数据集:

https://huggingface.co/datasets/OpenGVLab/MVBench

指令微调数据:

https://huggingface.co/datasets/OpenGVLab/VideoChat2-IT

模型实时排行榜:

https://huggingface.co/spaces/OpenGVLab/MVBe

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值