人工标注或成过去式?SSA语义分割框架、SSA-engine自动类别标注引擎,大幅提升细粒度语义标注效率

复旦大学ZVG实验室基于Meta的SegmentAnything模型和SA-1B数据集,开发了SSA语义分割框架和自动注释引擎SSA-engine。SSA能为mask生成细粒度语义标签,填补SA-1B的标注空白,可用于构建大规模语义分割数据集和多模态研究。SSA-engine自动化标注功能减少人工成本,结合SAM和先进模型,提升语义分割性能。

推荐语

4月5日,Meta发布 Segment Anything 模型和 SA-1B 数据集,引发CV届“地震”,其凭借一己之力,成功改写了物体检测、数据标注、图像分割等任务的游戏规则。

复旦大学ZVG实验室团队基于此最新开源了SSA语义分割框架和SSA-engine自动注释引擎,可以为所有mask自动地生成细粒度语义标签,填补了SA-1B中缺乏的细粒度语义标注的空白,为构建大规模语义分割数据集打下基础,也可以用于多模态的特征对齐等研究。

最后,我们提供了包含SA-1B在内的多个数据集快速下载地址,欢迎大家关注与探索。

本文已授权,作者丨复旦大学ZVG实验室

Semantic Segment Anything 丨 复旦大学ZVG实验室

Repo: https://github.com/fudan-zvg/Semantic-Segment-Anything

Demohttps://replicate.com/cjwbw/semantic-segment-anything

SAM是一种强大的图像分割模型,SA-1B是目前为止最大的分割数据集。然而,SAM缺乏为每个mask预测语义类别的能力。为了弥补上述不足,我们提出了一个基于SAM的语义分割框架,不仅能准确地分割mask,还能预测每个mask的语义类别,称为Semantic Segment Anything (SSA)。

此外,我们的SSA可以作为一个自动化的稠密开放词汇标注引擎,称为Semantic segment anything labeling engine (SSA-engine),为SA-1B或任何其他数据集提供丰富的语义类别注释。该引擎显著减少了人工注释及相关成本的需求。

为什么我们需要SSA:

  1. SAM是一种高度可泛化的图像分割算法,可以提供精确的mask分割。SA-1B是迄今为止最大的图像分割数据集,提供了精细的mask分割注释。但是,SAM和SA-1B都没有为每个mask提供类别预测或注释。这使得研究人员难以直接使用强大的SAM算法来解决语义分割任务,或者利用SA-1B来训练自己的模型。

  2. 先进的close-set分割器,如Oneformer,open-set分割器,如CLIPSeg,以及image caption方法,如BLIP,可以提供丰富的语义注释。不过,它们的mask分割预测可能无法分割出像SAM那么精确和细腻的边界。

  3. 因此,通过将SAM和

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值