Football Games HDU - 5873

异常杯足球赛成绩校验
一场名为“异常杯”的神秘国际足球锦标赛吸引了全球的关注。本文介绍了一种算法,用于判断该赛事中各小组的成绩是否可能被篡改。通过单循环赛制下各队得分的特性,设计了一个简洁高效的解决方案。

A mysterious country will hold a football world championships—Abnormal Cup, attracting football teams and fans from all around the world. This country is so mysterious that none of the information of the games will be open to the public till the end of all the matches. And finally only the score of each team will be announced.

At the first phase of the championships, teams are divided into MM groups using the single round robin rule where one and only one game will be played between each pair of teams within each group. The winner of a game scores 2 points, the loser scores 0, when the game is tied both score 1 point. The schedule of these games are unknown, only the scores of each team in each group are available.

When those games finished, some insider revealed that there were some false scores in some groups. This has aroused great concern among the pubic, so the the Association of Credit Management (ACM) asks you to judge which groups’ scores must be false.
Input
Multiple test cases, process till end of the input.

For each case, the first line contains a positive integers MM, which is the number of groups.
The ii-th of the next MM lines begins with a positive integer BiBi representing the number of teams in the ii-th group, followed by BiBi nonnegative integers representing the score of each team in this group.

number of test cases <= 10
M<= 100
Bii<= 20000
score of each team <= 20000
Output
For each test case, output MM lines. Output F" (without quotes) if the scores in the i-th group must be false, outputT” (without quotes) otherwise. See samples for detail.
Sample Input
2
3 0 5 1
2 1 1
Sample Output
F
T

思路:233一开始想太简单了。。。本来足球是胜3平1负0啊 这里 胜2这样不管是什么结果,只要队伍数量定了那么他们的得分总和就是定的。考虑前k个队,这k个队必定会每个队之间都进行一次比赛,如果只考虑k个队之间的关系,那么得分应该是k*(k-1) 但是 还有多余的队伍,所以他们的得分必定是大于等于k (k-1)的 这样我们把得分从小到大排序每次判断一下,最后再判断总和是不是n (n-1)

#include<iostream>
#include<algorithm>
#include<vector>
#include<queue>
#include<vector>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<string>
#include<stack>
#include<map>
using namespace std;

//thanks to pyf ...

#define INF 0x3f3f3f3f
#define CLR(x,y) memset(x,y,sizeof(x))
#define mp(x,y) make_pair(x,y)
typedef pair<int, int> PII;
typedef long long ll;

const int N = 1e6 + 5;

int a[N];
int main()
{
    int T;
    while (scanf("%d", &T) != EOF)
    {
        while (T--)
        {
            int n;
            scanf("%d", &n);
            for (int i = 1; i <= n; i++)
                scanf("%d", a + i);
            sort(a + 1, a + 1 + n);
            int sum = a[1];
            int flag = 1;
            for (int i = 2; i <= n; i++)
            {
                sum += a[i];
                if (sum < i * (i - 1))
                    flag = 0;
            }
            if (!flag || sum != n * (n - 1))
                printf("F\n");
            else
                printf("T\n");
        }
    }
}
### 关于HDU - 6609 的题目解析 由于当前未提供具体关于 HDU - 6609 题目的详细描述,以下是基于一般算法竞赛题型可能涉及的内容进行推测和解答。 #### 可能的题目背景 假设该题目属于动态规划类问题(类似于多重背包问题),其核心在于优化资源分配或路径选择。此类问题通常会给出一组物品及其属性(如重量、价值等)以及约束条件(如容量限制)。目标是最优地选取某些物品使得满足特定的目标函数[^2]。 #### 动态转移方程设计 如果此题确实是一个变种的背包问题,则可以采用如下状态定义方法: 设 `dp[i][j]` 表示前 i 种物品,在某种条件下达到 j 值时的最大收益或者最小代价。对于每一种新加入考虑范围内的物体 k ,更新规则可能是这样的形式: ```python for i in range(n): for s in range(V, w[k]-1, -1): dp[s] = max(dp[s], dp[s-w[k]] + v[k]) ``` 这里需要注意边界情况处理以及初始化设置合理值来保证计算准确性。 另外还有一种可能性就是它涉及到组合数学方面知识或者是图论最短路等相关知识点。如果是后者的话那么就需要构建相应的邻接表表示图形结构并通过Dijkstra/Bellman-Ford/Floyd-Warshall等经典算法求解两点间距离等问题了[^4]。 最后按照输出格式要求打印结果字符串"Case #X: Y"[^3]。 #### 示例代码片段 下面展示了一个简单的伪代码框架用于解决上述提到类型的DP问题: ```python def solve(): t=int(input()) res=[] cas=1 while(t>0): n,k=list(map(int,input().split())) # Initialize your data structures here ans=find_min_unhappiness() # Implement function find_min_unhappiness() res.append(f'Case #{cas}: {round(ans)}') cas+=1 t-=1 print("\n".join(res)) solve() ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值