codeforces-519C

讨论了ACM比赛中两种组队方式:一个高手带两个新手,或两个高手带一个新手,并通过算法找出最大组队数量。

A and B are preparing themselves for programming contests.

An important part of preparing for a competition is sharing programming knowledge from the experienced members to those who are just beginning to deal with the contests. Therefore, during the next team training A decided to make teams so that newbies are solving problems together with experienced participants.

A believes that the optimal team of three people should consist of one experienced participant and two newbies. Thus, each experienced participant can share the experience with a large number of people.

However, B believes that the optimal team should have two experienced members plus one newbie. Thus, each newbie can gain more knowledge and experience.

As a result, A and B have decided that all the teams during the training session should belong to one of the two types described above. Furthermore, they agree that the total number of teams should be as much as possible.

There are n experienced members and m newbies on the training session. Can you calculate what maximum number of teams can be formed?

Input
The first line contains two integers n and m (0 ≤ n, m ≤ 5·105) — the number of experienced participants and newbies that are present at the training session.

Output
Print the maximum number of teams that can be formed.

Example
Input
2 6
Output
2
Input
4 5
Output
3
Note
Let’s represent the experienced players as XP and newbies as NB.

In the first test the teams look as follows: (XP, NB, NB), (XP, NB, NB).

In the second test sample the teams look as follows: (XP, NB, NB), (XP, NB, NB), (XP, XP, NB).

题意:ACM组队打比赛 有两种方案 一种是两个大佬带一个菜鸡 还有一种是一个大佬带两个菜鸡 ,告诉你大佬和菜鸡的数量问你最多可以组多少队
思路:神踏马3分。。我看了看我可爱的队友的代码一行输入一行计算一行输出。。。心态有点崩2333还是讲讲我谜一样的三分。。三分的条件是有两个单调区间,一个递增一个递减,这里我们三分第一种方案的数量,那么总数量必定是随着第一种方案的数量 总数先增后减 符合三分要求

#include<iostream>
#include<algorithm>
#include<vector>
#include<queue>
#include<vector>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<string>
#include<stack>
#include<map>
using namespace std;

//thanks to pyf ...

#define INF 0x3f3f3f3f
#define CLR(x,y) memset(x,y,sizeof(x))
typedef pair<int,int> PII;
typedef long long ll;

const int N = 1e5+5;

int cal(int tar,int n,int m) // tar = 1EX + 2NB
{
//  if(n<tar || m/2 < tar)
//      return 0;
    return tar+min((n-tar)/2,m-2*tar);
}
int three_div(int n,int m)
{
    int l = 0,r = min(n,m/2);
    int ans = 0;
    int mid , mmid;
    while(l<=r)
    {
        int mid = (l+r)/2;
        int mmid = (mid+r+1)/2;//贼玄学。。为了避免mid和mmid重合
        int res1 = cal(mid,n,m);
        int res2 = cal(mmid,n,m);
        ans = max(ans,max(res1,res2));
//      cout << mid << " " << mmid << " " << res1 << " " << res2 << endl;
        if(res1<=res2) 
        {
            l = mid+1;
        }
        else 
            r = mmid-1;
    }
    return ans;
}

int main()
{
    int n,m;
    while(cin >> n >> m)
    {
        int ans ;
        if(n==2*m||m==2*n)
            ans = min(n,m);
        else
            ans = three_div(n,m);
        cout << ans << endl;
    }
}
内容概要:本文围绕六自由度机械臂的人工神经网络(ANN)设计展开,重点研究了正向与逆向运动学求解、正向动力学控制以及基于拉格朗日-欧拉法推导逆向动力学方程,并通过Matlab代码实现相关算法。文章结合理论推导与仿真实践,利用人工神经网络对复杂的非线性关系进行建模与逼近,提升机械臂运动控制的精度与效率。同时涵盖了路径规划中的RRT算法与B样条优化方法,形成从运动学到动力学再到轨迹优化的完整技术链条。; 适合人群:具备一定机器人学、自动控制理论基础,熟悉Matlab编程,从事智能控制、机器人控制、运动学六自由度机械臂ANN人工神经网络设计:正向逆向运动学求解、正向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)建模等相关方向的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握机械臂正/逆运动学的数学建模与ANN求解方法;②理解拉格朗日-欧拉法在动力学建模中的应用;③实现基于神经网络的动力学补偿与高精度轨迹跟踪控制;④结合RRT与B样条完成平滑路径规划与优化。; 阅读建议:建议读者结合Matlab代码动手实践,先从运动学建模入手,逐步深入动力学分析与神经网络训练,注重理论推导与仿真实验的结合,以充分理解机械臂控制系统的设计流程与优化策略。
引用\[1\]中提到了一种树形动态规划的方法来解决CodeForces - 982C问题。在这个问题中,subtree指的是子连通块,而不是子树。为了使cnt_white - cnt_black尽可能大,可以使用两次树形动态规划来求解。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。如果ans\[u\]为正,则减去dp\[v\]就是树链所代表的子树的权值。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] 问题: CodeForces - 982C 树形DP是什么问题?如何解决? 回答: CodeForces - 982C是一个树形动态规划问题。在这个问题中,需要求解子连通块的最大权值和,使得cnt_white - cnt_black尽可能大。解决这个问题的方法是使用两次树形动态规划。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] #### 引用[.reference_title] - *1* *2* [CodeForces - 1324F Maximum White Subtree(树形dp)](https://blog.youkuaiyun.com/qq_45458915/article/details/104831678)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值