原码,补码,反码(极简版)

原码补码反码

都有符号位,0表示正数,1表示负数

正数

在这里插入图片描述

正数的原码,补码,反码都相同

负数

负数的原码,最高位是1,其余的用正常二进制表示

负数的反码,对原码进行符号位不变,其余位取反

负数的补码,反码+1

在这里插入图片描述

计算原码、补码、反码的网站

https://www.lddgo.net/convert/number-binary-code

下载方式:https://pan.quark.cn/s/a4b39357ea24 布线问题(分支限界算法)是计算机科学和电子工程领域中一个广为人知的议题,它主要探讨如何在印刷电路板上定位两个节点间最短的连接路径。 在这一议题中,电路板被构建为一个包含 n×m 个方格的矩阵,每个方格能够被界定为可通行或不可通行,其核心任务是定位从初始点到最终点的最短路径。 分支限界算法是处理布线问题的一种常用策略。 该算法与回溯法有相似之处,但存在差异,分支限界法仅需获取满足约束条件的一个最优路径,并按照广度优先或最小成本优先的原则来探索解空间树。 树 T 被构建为子集树或排列树,在探索过程中,每个节点仅被赋予一次成为扩展节点的机会,且会一次性生成其全部子节点。 针对布线问题的解决,队列式分支限界法可以被采用。 从起始位置 a 出发,将其设定为首个扩展节点,并将与该扩展节点相邻且可通行的方格加入至活跃节点队列中,将这些方格标记为 1,即从起始方格 a 到这些方格的距离为 1。 随后,从活跃节点队列中提取队首节点作为下一个扩展节点,并将与当前扩展节点相邻且未标记的方格标记为 2,随后将这些方格存入活跃节点队列。 这一过程将持续进行,直至算法探测到目标方格 b 或活跃节点队列为空。 在实现上述算法时,必须定义一个类 Position 来表征电路板上方格的位置,其成员 row 和 col 分别指示方格所在的行和列。 在方格位置上,布线能够沿右、下、左、上四个方向展开。 这四个方向的移动分别被记为 0、1、2、3。 下述表格中,offset[i].row 和 offset[i].col(i=0,1,2,3)分别提供了沿这四个方向前进 1 步相对于当前方格的相对位移。 在 Java 编程语言中,可以使用二维数组...
源码来自:https://pan.quark.cn/s/a4b39357ea24 在VC++开发过程中,对话框(CDialog)作为典型的用户界面组件,承担着与用户进行信息交互的重要角色。 在VS2008SP1的开发环境中,常常需要满足为对话框配置个性化背景图片的需求,以此来优化用户的操作体验。 本案例将系统性地阐述在CDialog框架下如何达成这一功能。 首先,需要在资源设计工具中构建一个新的对话框资源。 具体操作是在Visual Studio平台中,进入资源视图(Resource View)界面,定位到对话框(Dialog)分支,通过右键选择“插入对话框”(Insert Dialog)选项。 完成对话框内控件的布局设计后,对对话框资源进行保存。 随后,将着手进行背景图片的载入工作。 通常有两种主要的技术路径:1. **运用位图控件(CStatic)**:在对话框界面中嵌入一个CStatic控件,并将其属性设置为BST_OWNERDRAW,从而具备自主控制绘制过程的权限。 在对话框的类定义中,需要重写OnPaint()函数,负责调用图片资源并借助CDC对象将其渲染到对话框表面。 此外,必须合理处理WM_CTLCOLORSTATIC消息,确保背景图片的展示不会受到其他界面元素的干扰。 ```cppvoid CMyDialog::OnPaint(){ CPaintDC dc(this); // 生成设备上下文对象 CBitmap bitmap; bitmap.LoadBitmap(IDC_BITMAP_BACKGROUND); // 获取背景图片资源 CDC memDC; memDC.CreateCompatibleDC(&dc); CBitmap* pOldBitmap = m...
### 原码补码反码的概念及转换方法 #### 一、概念定义 原码是最单的二进制表示形式,其中最高位作为符号位,其余部分为数值的绝对值对应的二进制数[^1]。 正数的原码反码补码均相同,而负数则有所不同。 - **原码**:直接将十进制数转化为二进制数,最高位为符号位(0代表正数,1代表负数)。例如,`+5` 的原码为 `00000101`,`-5` 的原码为 `10000101`[^3]。 - **反码**:对于正数,其反码原码一致;对于负数,符号位保持不变,其他位按位取反(即将 `0` 变成 `1`,`1` 变成 `0`)[^2]。例如,`-5` 的原码为 `10000101`,因此它的反码为 `11111010`[^4]。 - **补码**:对于正数,其补码等于原码;对于负数,先求得反码再加 `1` 即可得到补码。例如,`-5` 的反码为 `11111010`,那么 `-5` 的补码为 `11111011`。 --- #### 二、转换规则 以下是具体的转换过程: ##### 正数的情况 对于任何正整数,其原码反码补码都是一致的,均为该数的二进制表示形式。例如: ```plaintext +7 -> 原码 = 00000111, 反码 = 00000111, 补码 = 00000111 ``` ##### 负数的情况 1. **由原码反码**:保留符号位不变,对其余各位取反。例如: ```plaintext -8 -> 原码 = 10001000 -> 反码 = 11110111 ``` 2. **由反码补码**:在反码的基础上加 `1`。例如: ```plaintext -8 -> 反码 = 11110111 -> 补码 = 11111000 ``` 3. **由补码还原为原码**:如果已知某数的补码,则可以通过减 `1` 后再次取反的方式恢复为其原码。例如: ```plaintext 补码 = 11111000 -> 减1后 = 11110111 -> 再次取反 = 10001000 (即-8的原码) ``` --- #### 三、存储方式 计算机内部通常采用补码来存储数据,因为这种表示方法可以化硬件设计并统一处理加法和减法运算。例如,在内存中存储 `-5` 时,实际保存的是其补码形式 `11111011`。 --- #### 四、总结表 | 数字 | 符号位 | 原码 | 反码 | 补码 | |------|--------|------------|------------|------------| | +5 | 0 | 00000101 | 00000101 | 00000101 | | -5 | 1 | 10000101 | 11111010 | 11111011 | --- ### 示例代码 以下是一个 Python 实现,展示如何计算给定整数的原码反码补码: ```python def get_binary_representation(num, bits=8): if num >= 0: original_code = bin(num)[2:].zfill(bits) complement_code = original_code reverse_code = original_code else: original_code = '1' + bin(abs(num))[2:].zfill(bits - 1) reverse_code = ''.join(['1' if b == '0' else '0' for b in original_code[1:]]) complement_code = bin(int('0b' + reverse_code, 2) + 1)[2:].zfill(bits) return { "original": original_code, "reverse": reverse_code.zfill(bits), "complement": complement_code } result = get_binary_representation(-5) print(f"Original Code: {result['original']}") print(f"Reverse Code: {result['reverse']}") print(f"Complement Code: {result['complement']}") ``` 运行上述代码会输出如下结果: ```plaintext Original Code: 10000101 Reverse Code: 11111010 Complement Code: 11111011 ``` ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值