一、基础
对于彩色转灰度,有一个很著名的心理学公式:
Gray = R0.299 + G0.587 + B*0.114
二、整数算法
而实际应用时,为了避免低速的浮点运算,所以需要整数算法。
注意到系数都是3位精度的没有,我们可以将它们缩放1000倍来实现整数运算算法: Gray = (R299 + G587 + B*114 + 500) / 1000
RGB一般是8位精度,现在缩放1000倍,所以上面的运算是32位整型的运算。注意后面那个除法是整数除法,所以需要加上500来实现四舍五入。
就是由于该算法需要32位运算,所以该公式的另一个变种很流行:
Gray = (R30 + G59 + B*11 + 50) / 100
但是,虽说上一个公式是32位整数运算,但是根据80x86体系的整数乘除指令的特点,是可以用16位整数乘除指令来运算的。而且现在32位早普及了(AMD64都出来了),所以推荐使用上一个公式。
三、整数移位算法
上面的整数算法已经很快了,但是有一点仍制约速度,就是最后的那个除法。移位比除法快多了,所以可以将系数缩放成 2的整数幂。
习惯上使用16位精度,2的16次幂是65536,所以这样计算系数:
0.299 * 65536 = 19595.264 ≈ 1959 0.587 * 65536 + (0.264) = 38469.632 + 0.264 = 38469.896 ≈ 38469 0.114 * 65536 + (0.896) = 7471.104 + 0.896 = 7472
可能很多人看见了,我所使用的舍入方式不是四舍五入。四舍五入会有较大的误差,应该将以前的计算结果的误差一起计算进去,舍入方式是去尾法:
写成表达式是:
Gray = (R19595 + G38469 + B*7472) >&