np.where的两种用法

本文详细解析了 NumPy 中的 where 函数用法,包括如何使用条件参数获取数组中符合条件元素的索引,以及如何结合两个数组进行选择性输出。通过具体实例展示了 one-dimensional 和 multi-dimensional 数组的应用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. np.where(condition):返回满足条件的下标。这里的坐标以tuple的形式给出,通常原数组有多少维,输出的tuple中就包含几个数组,分别对应符合条件元素的各维坐标。
>>>a = np.array([2,4,6,8,10])
>>>np.where(a > 5)             # 返回索引
(array([2, 3, 4]),)   
>>>a[np.where(a > 5)]              # 等价于 a[a>5]
array([ 6,  8, 10])

>>>a = np.arange(27).reshape(3,3,3)
>>>a
array([[[ 0,  1,  2],
        [ 3,  4,  5],
        [ 6,  7,  8]],

       [[ 9, 10, 11],
        [12, 13, 14],
        [15, 16, 17]],

       [[18, 19, 20],
        [21, 22, 23],
        [24, 25, 26]]])

>>>np.where(a > 5)
(array([0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2]),
 array([2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2]),
 array([0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2]))
  1. np.where(condition, out_1, out_2):若满足condition,就返回out_1,否则返回out_2
>>> aa = np.arange(10)
>>> np.where(aa,1,-1)
array([-1,  1,  1,  1,  1,  1,  1,  1,  1,  1])  # 0为False,所以第一个输出-1
>>> np.where(aa > 5,1,-1)
array([-1, -1, -1, -1, -1, -1,  1,  1,  1,  1])

>>> np.where([[True,False], [True,True]],  
             [[1,2], [3,4]],
             [[9,8], [7,6]])
array([[1, 8],
       [3, 4]])

上面这个例子的条件为[[True,False], [True,False]],分别对应最后输出结果的四个值。第一个值从[1,9]中选,因为条件为True,所以是选1。第二个值从[2,8]中选,因为条件为False,所以选8,后面以此类推。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值