2021-11-09

本文介绍了一种祖玛游戏的变种,玩家需通过手头的彩球策略来清空桌面上的彩球。通过一系列规则和剪枝条件,计算最少需要投入多少球才能完成目标。实例演示和代码实现展示了如何运用递归和状态搜索算法解决此问题。

题目详情:

你正在参与祖玛游戏的一个变种。

在这个祖玛游戏变体中,桌面上有 一排 彩球,每个球的颜色可能是:红色 'R'、黄色 'Y'、蓝色 'B'、绿色 'G' 或白色 'W' 。你的手中也有一些彩球。

你的目标是 清空 桌面上所有的球。每一回合:

从你手上的彩球中选出 任意一颗 ,然后将其插入桌面上那一排球中:两球之间或这一排球的任一端。
接着,如果有出现 三个或者三个以上 且 颜色相同 的球相连的话,就把它们移除掉。
如果这种移除操作同样导致出现三个或者三个以上且颜色相同的球相连,则可以继续移除这些球,直到不再满足移除条件。
如果桌面上所有球都被移除,则认为你赢得本场游戏。
重复这个过程,直到你赢了游戏或者手中没有更多的球。
给你一个字符串 board ,表示桌面上最开始的那排球。另给你一个字符串 hand ,表示手里的彩球。请你按上述操作步骤移除掉桌上所有球,计算并返回所需的 最少 球数。如果不能移除桌上所有的球,返回 -1 。

示例:

输入:board = "WRRBBW", hand = "RB"
输出:-1
解释:无法移除桌面上的所有球。可以得到的最好局面是:
- 插入一个 'R' ,使桌面变为 WRRRBBW 。WRRRBBW -> WBBW
- 插入一个 'B' ,使桌面变为 WBBBW 。WBBBW -> WW
桌面上还剩着球,没有其他球可以插入。

输入:board = "WWRRBBWW", hand = "WRBRW"
输出:2
解释:要想清空桌面上的球,可以按下述步骤:
- 插入一个 'R' ,使桌面变为 WWRRRBBWW 。WWRRRBBWW -> WWBBWW
- 插入一个 'B' ,使桌面变为 WWBBBWW 。WWBBBWW -> WWWW -> empty
只需从手中出 2 个球就可以清空桌面。

输入:board = "G", hand = "GGGGG"
输出:2
解释:要想清空桌面上的球,可以按下述步骤:
- 插入一个 'G' ,使桌面变为 GG 。
- 插入一个 'G' ,使桌面变为 GGG 。GGG -> empty
只需从手中出 2 个球就可以清空桌面。

输入:board = "RBYYBBRRB", hand = "YRBGB"
输出:3
解释:要想清空桌面上的球,可以按下述步骤:
- 插入一个 'Y' ,使桌面变为 RBYYYBBRRB 。RBYYYBBRRB -> RBBBRRB -> RRRB -> B
- 插入一个 'B' ,使桌面变为 BB 。
- 插入一个 'B' ,使桌面变为 BBB 。BBB -> empty
只需从手中出 3 个球就可以清空桌面。

代码:

class Solution:
    def findMinStep(self, board: str, hand: str) -> int:
        def clean(s):
            # 消除桌面上需要消除的球
            n = 1
            while n:
                s, n = re.subn(r"(.)\1{2,}", "", s)
            return s

        hand = "".join(sorted(hand))

        # 初始化用队列维护的状态队列:其中的三个元素分别为桌面球状态、手中球状态和回合数
        queue = deque([(board, hand, 0)])

        # 初始化用哈希集合维护的已访问过的状态
        visited = {(board, hand)}

        while queue:
            cur_board, cur_hand, step = queue.popleft()
            for i, j in product(range(len(cur_board) + 1), range(len(cur_hand))):
                # 第 1 个剪枝条件: 当前球的颜色和上一个球的颜色相同
                if j > 0 and cur_hand[j] == cur_hand[j - 1]:
                    continue

                # 第 2 个剪枝条件: 只在连续相同颜色的球的开头位置插入新球
                if i > 0 and cur_board[i - 1] == cur_hand[j]:
                    continue

                # 第 3 个剪枝条件: 只在以下两种情况放置新球
                #  - 第 1 种情况 : 当前球颜色与后面的球的颜色相同
                #  - 第 2 种情况 : 当前后颜色相同且与当前颜色不同时候放置球      
                choose = False
                if 0 < i < len(cur_board) and cur_board[i - 1] == cur_board[i] and cur_board[i - 1] != cur_hand[j]:
                    choose = True
                if i < len(cur_board) and cur_board[i] == cur_hand[j]:
                    choose = True

                if choose:
                    new_board = clean(cur_board[:i] + cur_hand[j] + cur_board[i:])
                    new_hand = cur_hand[:j] + cur_hand[j + 1:]
                    if not new_board:
                        return step + 1
                    if (new_board, new_hand) not in visited:
                        queue.append((new_board, new_hand, step + 1))
                        visited.add((new_board, new_hand))

        return -1

我们来逐步分析你提出的问题,先从 SQL 语句的逻辑入手,再解释为什么会出现 `null` 值,以及为什么在“9-15”这一行中窗口函数返回的是 `2021-06-21`(比当前行的结束时间还大),最后给出正确计算每个品牌**去重后总打折天数**的方法。 --- ### ✅ 你的SQL语句是: ```sql SELECT brand, stt, edt, MAX(edt) OVER ( PARTITION BY brand ORDER BY stt ROWS BETWEEN UNBOUNDED PRECEDING AND 1 PRECEDING ) AS maxEdt FROM test4; ``` 作用:对每个品牌的促销活动按开始日期排序,然后为每一行计算 **之前所有行中最大的结束日期(edt)**。 --- ## 🔍 问题1:为什么第一行 `maxEdt` 是 `null`? 看 redmi 的第一条记录: ``` redmi 2021-06-05 2021-06-21 null ``` 因为这是一组(brand=redmi)中的**第一行**。 窗口定义是: > `ROWS BETWEEN UNBOUNDED PRECEDING AND 1 PRECEDING` 意思是:“从该分组的第一行到当前行的前一行”。 但当前行是第一行,它前面没有数据 → 所以前面的行集合为空集 → `MAX(edt)` 在空集上运算结果为 `NULL`。 ✅ **结论**:第一个活动没有“之前的活动”,所以 `maxEdt = NULL` 是正常的。 --- ## 🔍 问题2:为什么第二行(2021-06-092021-06-15)的 `maxEdt = 2021-06-21`? 看第二条 redmi 记录: ``` redmi 2021-06-09 2021-06-15 2021-06-21 ``` 注意!虽然当前行的 `edt=2021-06-15`,但它的 `maxEdt` 来自于前面所有行的最大 `edt`,也就是第一行的 `edt=2021-06-21`。 ⚠️ 关键点: 窗口函数 `MAX(edt)` 是取历史行中 `edt` 字段的值,并不是和当前行有关。 即使当前行的 `edt` 较小(如 6月15日),只要前面某行的 `edt` 更晚(如 6月21日),就会被保留下来。 所以这里 `maxEdt = 2021-06-21` 是完全正确的。 💡 这个值的意义是:**在当前这次活动开始之前,该品牌最后一次可能还在打折的时间点(即最大结束日)**。 这个技巧常用于判断是否有时间重叠! --- ## ✅ 如何用这个字段判断是否连续或重叠? 我们可以利用 `maxEdt` 和当前行的 `stt` 比较: - 如果 `stt <= maxEdt`:说明当前活动与前面某个活动有重叠或紧接 → 可以合并 - 否则:中间有空档 → 不连续,需要新开一个区间 这是典型的“合并区间”问题,在数据库中可通过以下方式解决: --- ## ✅ 正确解法:计算每个品牌去重后的总打折天数(处理交叉日期) ### Step 1: 排序并找出是否属于同一连续区间(使用 `start_gap_flag`) ```sql WITH ordered_data AS ( SELECT brand, stt::date, edt::date FROM test4 ), marked_gaps AS ( SELECT brand, stt, edt, -- 如果当前开始时间 > 之前所有活动的最大结束时间,则说明断开了 CASE WHEN stt > MAX(edt) OVER ( PARTITION BY brand ORDER BY stt ROWS BETWEEN UNBOUNDED PRECEDING AND 1 PRECEDING ) THEN 1 ELSE 0 END AS is_new_period FROM ordered_data ), -- Step 2: 使用累计标志划分不同的连续区间 grouped_periods AS ( SELECT brand, stt, edt, SUM(is_new_period) OVER ( PARTITION BY brand ORDER BY stt ROWS UNBOUNDED PRECEDING ) AS period_id FROM marked_gaps ), -- Step 3: 对每个 period 取最小 stt 和最大 edt(即合并后的区间) merged_periods AS ( SELECT brand, MIN(stt) AS period_stt, MAX(edt) AS period_edt FROM grouped_periods GROUP BY brand, period_id ) -- Step 4: 计算每个品牌总的不重复天数 SELECT brand, SUM(period_edt - period_stt + 1) AS total_discount_days FROM merged_periods GROUP BY brand ORDER BY brand; ``` --- ### 📌 代码解释: 1. **`ordered_data`**:确保日期类型为 `date`,避免字符串比较出错。 2. **`marked_gaps`**: - 使用窗口函数获取此前所有区间的最大结束日。 - 若当前开始日 > 此前最大结束日 → 新周期开始(`is_new_period = 1`)。 3. **`grouped_periods`**: - 利用 `SUM(...) OVER (...)` 构造唯一 `period_id`,将连续或重叠的区间归为一组。 4. **`merged_periods`**: - 按 `brand + period_id` 分组,取每段的起止时间。 5. **最终统计**: - 每个合并区间的天数 = `end - start + 1`(包含首尾)。 - 累加得到各品牌总天数。 --- ### 🧮 示例输出(基于你的数据): | brand | total_discount_days | |--------|---------------------| | huawei | 22 | | oppo | 17 | | redmi | 22 | | vivo | 17 | #### 验证一下: - **vivo**: - 第一段:6.5 ~ 6.15 (11天) - 第二段:6.9 ~ 6.21(重叠了6.9~6.15) - 合并后:6.5 ~ 6.21 → 共 17 天 ✅ - **redmi**: - 6.5~6.21,6.9~6.15(完全包含),6.17~6.26 - 前两段已覆盖到6.21,第三段6.17 < 6.21 → 重叠 - 合并为 6.5 ~ 6.26 → 共 22 天 ✅ - **huawei**: - 6.5~6.26,6.9~6.15(包含),6.17~6.21(也在范围内) - 整体就是 6.5~6.26 → 22 天 ✅ --- ## ✅ 回答总结: - `maxEdt` 出现 `NULL` 是因为第一行前面没有数据,符合窗口定义。 - `maxEdt` 显示比当前 `edt` 大,是因为它反映的是**之前活动中最晚结束时间**,而非当前行。 - 要准确统计去重天数,必须先**合并重叠/连续的时间区间**,不能简单相加。 - 上述 SQL 完整实现了“按品牌合并打折时间段并计算总天数”的需求。 --- ###
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值