逻辑回归API
- sklearn.Linear_model.logisticRegression
- sklearn.Linear_model.logisticRegression(penalty=‘12’,c=1.0)
- logistic回归分类器
- coef_:回归系数
应用场景
- 广告点击率
- 是否为垃圾邮件
- 是否患病
- 金融诈骗
- 虚假账号
癌症分类流程
- 网上获取数据(工具pandas)
- 数据缺失值处理,标准化
- logisticRegression估计器流程
代码:
from sklearn.datasets import load_boston # 波士顿房价数据集使用API
from sklearn.linear_model import LogisticRegression ##回归预测时使用的API Ridge岭回归 LogisticRegression逻辑回归
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler ## 标准化API
from sklearn.metrics import mean_squared_error,classification_report
from sklearn.externals import joblib
import pandas as pd
import numpy as np
def charge_data():
# 构造标签名字
colums=["colun1","colum2","colum3","colum4","colum5","colum6","colum7","colum8","colum9","colum10","TARGET"]
# 读取数据
data=pd.read_csv("./breast-cancer-wisconsin.data",names=colums)
# 缺失值处理
data=data.replace(to_replace="?",value=np.nan)
data=data.dropna()
# 数据集分割
x_train,x_text,y_train,y_text=train_test_split(data[colums[1:10]],data[colums[10]],test_size=0.25)
# print("特征值,训练集的\n",x_train)
# print("特征值,测试集的\n",x_text)
# print("目标值,训练集的\n",y_train)
# print("目标值,测试集的\n",y_text)
# 特征值进行标准化处理
std=StandardScaler()
std.fit_transform(x_train)
std.transform(x_text)
# 逻辑回归预测
lg=LogisticRegression(C=1.0)
lg.fit(x_train,y_train)
print("回归参数:",lg.coef_)
pre=lg.predict(x_train)
print("预测值",pre)
print("准确率:",lg.score(x_text,y_text))
print("召回率:\n",classification_report(y_train,pre,labels=[2,4],target_names=["良性","恶性"]))
return None
# https://archive.ics.uci.edu/ml/machine-learning-databases.data
if __name__ == '__main__':
charge_data()
运行结果:

本文介绍sklearn库中逻辑回归API的使用方法,通过乳腺癌数据集的案例,详细讲解了数据预处理、模型训练及评估的过程。
1061

被折叠的 条评论
为什么被折叠?



