Codeforces Round #263 (Div. 2) proC

题目:

C. Appleman and Toastman
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Appleman and Toastman play a game. Initially Appleman gives one group of n numbers to the Toastman, then they start to complete the following tasks:

  • Each time Toastman gets a group of numbers, he sums up all the numbers and adds this sum to the score. Then he gives the group to the Appleman.
  • Each time Appleman gets a group consisting of a single number, he throws this group out. Each time Appleman gets a group consisting of more than one number, he splits the group into two non-empty groups (he can do it in any way) and gives each of them to Toastman.

After guys complete all the tasks they look at the score value. What is the maximum possible value of score they can get?

Input

The first line contains a single integer n (1 ≤ n ≤ 3·105). The second line contains n integers a1a2, ..., an (1 ≤ ai ≤ 106) — the initial group that is given to Toastman.

Output

Print a single integer — the largest possible score.

Sample test(s)
input
3
3 1 5
output
26
input
1
10
output
10
Note

Consider the following situation in the first example. Initially Toastman gets group [3, 1, 5] and adds 9 to the score, then he give the group to Appleman. Appleman splits group [3, 1, 5] into two groups: [3, 5] and [1]. Both of them should be given to Toastman. When Toastman receives group [1], he adds 1 to score and gives the group to Appleman (he will throw it out). When Toastman receives group [3, 5], he adds 8 to the score and gives the group to Appleman. Appleman splits [3, 5] in the only possible way: [5] and [3]. Then he gives both groups to Toastman. When Toastman receives [5], he adds 5 to the score and gives the group to Appleman (he will throws it out). When Toastman receives [3], he adds 3 to the score and gives the group to Appleman (he will throws it out). Finally Toastman have added 9 + 1 + 8 + 5 + 3 = 26 to the score. This is the optimal sequence of actions.


题意分析:

题意还是比较明白。
对原数组进行排序,然后一个递归模拟一下就行了。

代码:

#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <string>
#include <iostream>


using namespace std;


long long a[300005];
int main()
{
    int n;
    long long ans;
    while(scanf("%d",&n)!=EOF)
    {
        ans=0;
        for(int i=1;i<=n;i++)
        {
            cin>>a[i];
        }
        sort(a+1,a+n+1);
        for(int i=1;i<=n;i++)
        {
            a[i]+=a[i-1];
        }
        ans=a[n];
        for(int i=0;i<=n-2;i++)
        {
            ans+=(a[n]-a[i]);
        }
        cout<<ans<<endl;
    }
}


计及源荷不确定性的综合能源生产单元运行调度与容量配置优化研究(Matlab代码实现)内容概要:本文围绕“计及源荷不确定性的综合能源生产单元运行调度与容量配置优化”展开研究,利用Matlab代码实现相关模型的构建与仿真。研究重点在于综合能源系统中多能耦合特性以及风、光等可再生能源出力和负荷需求的不确定性,通过鲁棒优化、场景生成(如Copula方法)、两阶段优化等手段,实现对能源生产单元的运行调度与容量配置的协同优化,旨在提高系统经济性、可靠性和可再生能源消纳能力。文中提及多种优化算法(如BFO、CPO、PSO等)在调度与预测中的应用,并强调了模型在实际能源系统规划与运行中的参考价值。; 适合人群:具备一定电力系统、能源系统或优化理论基础的研究生、科研人员及工程技术人员,熟悉Matlab编程和基本优化工具(如Yalmip)。; 使用场景及目标:①用于学习和复现综合能源系统中考虑不确定性的优化调度与容量配置方法;②为含高比例可再生能源的微电网、区域能源系统规划设计提供模型参考和技术支持;③开展学术研究,如撰写论文、课题申报时的技术方案借鉴。; 阅读建议:建议结合文中提到的Matlab代码和网盘资料,先理解基础模型(如功率平衡、设备模型),再逐步深入不确定性建模与优化求解过程,注意区分鲁棒优化、随机优化与分布鲁棒优化的适用场景,并尝试复现关键案例以加深理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值