优质资源:http://wiki.baidu.com/pages/viewpage.action?pageId=69100592
https://cwiki.apache.org/confluence/display/Hive/Home
http://wiki.baidu.com/pages/viewpage.action?pageId=409406475
什么是hive:http://www.aboutyun.com/thread-7411-1-1.html
hive的工作流程:https://blog.youkuaiyun.com/licw_0909/article/details/54234540
hive的组件及功能:http://www.aboutyun.com/thread-7478-1-1.html
Hive中HCatalog和WebHCat:http://blog.sina.com.cn/s/blog_72ef7bea0102vxia.html
什么是HIVE(本质的作用:将sql查询语句转化成mapreduce程序)
Apache Hive
The Apache Hive™ data warehouse software facilitates reading, writing, and managing large datasets residing in distributed storage and queried using SQL syntax.
Built on top of Apache Hadoop™, Hive provides the following features:
1.Tools to enable easy access to data via SQL, thus enabling data warehousing tasks such as extract/transform/load (ETL), reporting, and data analysis.
2.A mechanism to impose structure on a variety of data formats
3.Access to files stored either directly in Apache HDFS™ or in other data storage systems such as Apache HBase™
4.Query execution via Apache Tez™, Apache Spark™, or MapReduce
5.Procedural language with HPL-SQL
6.Sub-second query retrieval via Hive LLAP, Apache YARN and Apache Slider.
上面英文的大致意思是:
在Apache Hive™ 数据仓库软件便于阅读,写作和管理驻留在分布式存储大型数据集,并使用SQL语法查询。
Hive 构建于Apache Hadoop™之上,提供以下功能:
1.通过SQL轻松访问数据的工具,从而实现数据仓库任务,如提取/转换/加载(ETL),报告和数据分析。
2.一种在各种数据格式上强加结构的机制
3.访问直接存储在Apache HDFS ™ 或其他数据存储系统(如Apache HBase ™)中的文件
4.通过Apache Tez ™, Apache Spark ™或 MapReduce执行查询
5.使用HPL-SQL的过程语言
6.通过Hive LLAP,Apache YARN和Apache Slider进行亚秒级查询检索。
上面的意思很明白了.这里再给他提炼一下:
1.hive是一个数据仓库
2.hive基于hadoop。
总结为一句话:hive是基于hadoop的数据仓库。
Hive是一种建立在Hadoop文件系统上的数据仓库架构,并对存储在HDFS中的数据进行分析和管理;
(也就是说对存储在HDFS中的数据进行分析和管理,我们不想使用手工,我们建立一个工具把,那么这个工具就可以是hive)
(数据仓库常用来存储冷数据--------如操作日志等这种不常用的数据)
1.2 Hive架构
1.2.1 架构图
Jobtracker是hadoop1.x中的组件,它的功能相当于: Resourcemanager+AppMaster
TaskTracker 相当于: Nodemanager + yarnchild
2、执行的过程:
HiveQL通过CLI/web UI或者thrift 、 odbc 或 jdbc接口的外部接口提交,经过complier编译器,运用Metastore中的云数据进行类型检测和语法分析,生成一个逻辑方案(logical plan),然后通过简单的优化处理,产生一个以有向无环图DAG数据结构形式展现的map-reduce任务
1.2.2 基本组成
- 用户接口:包括 CLI、JDBC/ODBC、WebGUI。
- 元数据存储:通常是存储在关系数据库如 mysql , derby中。
- 解释器、编译器、优化器、执行器。
- 用户接口主要由三个:CLI、JDBC/ODBC和WebGUI。其中,CLI为shell命令行;JDBC/ODBC是Hive的JAVA实现,与传统数据库JDBC类似;WebGUI是通过浏览器访问Hive。
- 元数据存储:Hive 将元数据存储在数据库中。Hive 中的元数据包括表的名字,表的列和分区及其属性,表的属性(是否为外部表等),表的数据所在目录等。
- 解释器、编译器、优化器完成 HQL 查询语句从词法分析、语法分析、编译、优化以及查询计划的生成。生成的查询计划存储在 HDFS 中,并在随后有 MapReduce 调用执行。
1.2.3 各组件的基本功能
1.3 Hive与Hadoop的关系
Hive利用HDFS存储数据,利用MapReduce查询数据
1.4 Hive与传统数据库对比
总结:hive具有sql数据库的外表,但应用场景完全不同,hive只适合用来做批量数据统计分析
1.5 Hive的数据存储
1、Hive中所有的数据都存储在 HDFS 中,没有专门的数据存储格式(可支持Text,SequenceFile,ParquetFile(带表头),RCFILE(和ParquetFile类似,是不同公司开发的)等)
2、只需要在创建表的时候告诉 Hive 数据中的列分隔符和行分隔符,Hive 就可以解析数据。
3、Hive 中包含以下数据模型:DB、Table,External Table,Partition,Bucket。
² db:在hdfs中表现为${hive.metastore.warehouse.dir}目录下一个文件夹
² table:在hdfs中表现所属db目录下一个文件夹
² external table:外部表, 与table类似,不过其数据存放位置可以在任意指定路径
普通表: 删除表后, hdfs上的文件都删了
External外部表删除后, hdfs上的文件没有删除, 只是把文件删除了
² partition:在hdfs中表现为table目录下的子目录
² bucket:桶, 在hdfs中表现为同一个表目录下根据hash散列之后的多个文件, 会根据不同的文件把数据放到不同的文件中
hiveServer/HiveServer2
1:简单介绍
两者都允许远程客户端使用多种编程语言,通过HiveServer或者HiveServer2,客户端可以在不启动CLI的情况下对Hive中的数据进行操作,连这个和都允许远程客户端使用多种编程语言如java,python等向hive提交请求,取回结果(从hive0.15起就不再支持hiveserver了),但是在这里我们还是要说一下hiveserver
HiveServer或者HiveServer2都是基于Thrift的,但HiveSever有时被称为Thrift server,而HiveServer2却不会。既然已经存在HiveServer,为什么还需要HiveServer2呢?这是因为HiveServer不能处理多于一个客户端的并发请求,这是由于HiveServer使用的Thrift接口所导致的限制,不能通过修改HiveServer的代码修正。因此在Hive-0.11.0版本中重写了HiveServer代码得到了HiveServer2,进而解决了该问题。HiveServer2支持多客户端的并发和认证,为开放API客户端如JDBC、ODBC提供更好的支持。