题意:
给出K1,求一个12位数(不含前导0)K2,使得K1^K2 mod (10^12) = K2
思路:借鉴他人思路,任取一个K2,若K1^K2 mod (10^12) != K2,则令K2 = K1^K2 mod (10^12) ,效率较高,但具体原因不知,若了解原因请指教
//http://www.cnblogs.com/IMGavin/
#include <iostream>
#include <stdio.h>
#include <cstdlib>
#include <cstring>
#include <queue>
#include <vector>
#include <map>
#include <stack>
#include <set>
#include <bitset>
#include <algorithm>
using namespace std;
typedef long long LL;
#define gets(A) fgets(A, 1e8, stdin)
const int INF = 0x3F3F3F3F, N = 18, MOD = 1003;
LL p[N];
LL ans;
int n;
LL MultMod(LL a,LL b,LL mod){
LL ite = (1LL<<20)-1;
return (a*(b>>20)%mod*(1LL<<20)%mod+a*(b&(ite))%mod)%mod;
}
LL PowMod(LL a,LL b,LL MOD){
LL ret=1;
while(b){
if(b&1) ret=MultMod(ret,a,MOD);
a=MultMod(a,a,MOD);
b>>=1;
}
return ret;
}
LL solve(LL x){
while(1){
LL tp = PowMod(n, x, p[12]);
if(tp != x){
x = tp;
}else{
break;
}
}
return x;
}
int main(){
p[0] = 1;
int cas = 0;
for(int i = 1 ; i < N; i++){
p[i] = p[i - 1] * 10ll;
}
while(cin >> n, n){
printf("Case %d: Public Key = %d Private Key = %lld\n", ++cas, n, solve(13));
}
return 0;
}