hdu 1213 求连通分支个数

本文通过一个具体的在线评测题目介绍了并查集算法的应用。详细解释了如何使用并查集来解决连接分量的问题,并提供了完整的代码实现。文章还讨论了通过减少有效合并次数来计算剩余连通分量的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=1213

对这个问题抽象之后,就是要求进行若干次union操作之后,还会剩下多少颗树(或者说还剩下多少Connected Components)。反映到这个例子中,就是要求有多少“圈子”。其实,这也是社交网络中的最基本的功能,每次系统向你推荐的那些好友一般而言,会跟你在一个“圈子”里面,换言之,也就是你可能认识的人,以并查集的视角来看这层关系,就是你们挂在同一颗树上

/*用原始连通分量数n 减去 有效的合并次数。


即每次合并两个连通分量就会使得总的分量数目减少1*/


#include <iostream>
#include <cstring>
using namespace std;
const int maxn=1000+5;
int fa[maxn];
int  Find(int x)
{
    if(fa[x]==-1)
        return x;
    return fa[x]=Find(fa[x]);
}
int mix(int x,int y)
{
    int fx=Find(x);
    int fy=Find(y);
    if(fx!=fy)
    {
        fa[fx]=fy;
        return 1;
    }
    return 0;
}
int main()
{
    int t,n,m,x,y;
    cin>>t;
    while(t--)
    {
        cin>>n>>m;
        memset(fa,-1,sizeof(fa));
        int ans=n;
        while(m--)
        {
            cin>>x>>y;
            ans-=mix(x,y);
        }
        cout<<ans<<endl;
    }
    return 0;
}

### 使用Tarjan算法计算强连通分量数量 #### 算法原理 Tarjan算法通过深度优先搜索(DFS)遍历有向图中的节点,记录访问顺序和低链值(low-link value),从而识别出所有的强连通分量。当发现一个节点的访问序号等于其最低可达节点编号时,表明找到了一个新的强连通分量。 #### 时间复杂度分析 该方法的时间效率取决于存储结构的选择。对于采用邻接表表示的稀疏图而言,整体性能更优,能够在线性时间内完成操作,即O(n+m)[^4];而针对稠密图则可能退化至平方级别(O(n²))。 #### Python代码实现 下面给出一段Python程序用于演示如何基于NetworkX库构建并处理带权无环图(DAG),进而解其中存在的全部SCC及其总数: ```python import networkx as nx def tarjan_scc(graph): index_counter = [0] stack = [] lowlinks = {} index = {} result = [] def strongconnect(node): # Set the depth index for this node to be the next available incrementing counter. index[node] = index_counter[0] lowlinks[node] = index_counter[0] index_counter[0] += 1 stack.append(node) try: successors = graph.successors(node) except AttributeError: successors = graph.neighbors(node) for successor in successors: if successor not in lowlinks: strongconnect(successor) lowlinks[node] = min(lowlinks[node], lowlinks[successor]) elif successor in stack: lowlinks[node] = min(lowlinks[node], index[successor]) if lowlinks[node] == index[node]: scc = set() while True: current_node = stack.pop() scc.add(current_node) if current_node == node: break result.append(scc) for node in graph.nodes(): if node not in lowlinks: strongconnect(node) return result if __name__ == "__main__": G = nx.DiGraph() # Create a directed graph object using NetworkX library edges_list = [(1, 2),(2, 3),(3, 1)] # Define edge list according to sample input data from hdu1269 problem statement[^5] G.add_edges_from(edges_list) components = tarjan_scc(G) print(f"Number of Strongly Connected Components found: {len(components)}") ``` 此段脚本定义了一个名为`tarjan_scc()`的功能函数接收网络对象作为参数,并返回由集合组成的列表形式的结果集,每个子集中包含了构成单个SCC的所有顶点。最后部分展示了创建测试用DAG实例的过程以及调用上述功能获取最终答案的方式。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值