volatile关键字解析

本文详细解析了Java中的volatile关键字,包括其在多线程环境下的作用原理、如何保证内存可见性和有序性,以及在实际编程中的应用案例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

volatile关键字在jdk1.5 之前都是充满争议性的的,在jdk1.5 之后才算是焕发出了新的生命,volatile关键字的意思很简单:即通知内存其所修饰的最新变化,防止出现内存不一致的情况。

volatile关键字的实现原理和数据的存储原理分不开。大概可以从以下3个方面来进行解释:首先是内存模型,其次是并发编程的三个基本概念,最后Java的内存模型。理解了这三个之后,才能明白volatile的实现原理和使用场景。

首先是内存模型:计算机的指令是CPU来执行的,CPU的数据是从内存里获得的,但是CPU和内存之间还有一个缓存,也就是说CPU执行所需的数据最直接是从缓存中获得的。执行结果也会进入到缓存里,然后再写入内存里。这样基本上就可以明白使用多线程时可能会出现什么问题了:内存不一致。即程序指令运行完的结果没有及时存储到内存中,导致其他指令取得的数据不是该指令运算出来的最新数据所产生的错误。

并发编程的三个基本概念:1)、原子性:即不可分割,指令进程不可中断,要不然就直接不执行,比如说银行账户转钱的问题,A向B中转1000元,操作流程不外乎是A账户中减少1000元,B账户增加1000元,相信大家都能看出来这两个指令绝对不能断开运行,更不能中断。2)、可见性:即多线程访问同一个变量时,一个线程修改了当前的变量的值,其他线程必须能够立即看见(大部分的线程问题多处在这个上边),变量的时效性问题。3)、有序性:处理器在执行指令的时候,为了提高效率会在考虑数据的依赖性的情况下将指令指令从新进行排序,最后会保证结果和顺序执行结果是一样的。但是效果是一样的,这个保证对单线程是有效的,但是对于多线程就呵呵了看下边的栗子:

1
2
3
4
5
6
7
8
9
//线程1:
context = loadContext();   //语句1
inited = true;            //语句2
 
//线程2:
while(!inited ){
  sleep()
}
doSomethingwithconfig(context);

由于语句1和语句2没有数据依赖性,因此可能会被重排序。假如发生了重排序,在线程1执行过程中先执行语句2,而此是线程2会以为初始化工作已经完成,那么就会跳出while循环,去执行doSomethingwithconfig(context)方法,而此时context并没有被初始化,就会导致程序出错。也就是说,要想并发程序正确地执行,必须要保证原子性、可见性以及有序性。只要有一个没有被保证,就有可能会导致程序运行不正确。

Java的内存模型:在Java虚拟机规范中试图定义一种Java内存模型(Java Memory Model,JMM)来屏蔽各个硬件平台和操作系统的内存访问差异,以实现让Java程序在各种平台下都能达到一致的内存访问效果。那么Java内存模型规定了哪些东西呢,它定义了程序中变量的访问规则,往大一点说是定义了程序执行的次序。注意,为了获得较好的执行性能,Java内存模型并没有限制执行引擎使用处理器的寄存器或者高速缓存来提升指令执行速度,也没有限制编译器对指令进行重排序。也就是说,在java内存模型中,也会存在缓存一致性问题和指令重排序的问题。Java内存模型规定所有的变量都是存在主存当中(类似于前面说的物理内存),每个线程都有自己的工作内存(类似于前面的高速缓存)。线程对变量的所有操作都必须在工作内存中进行,而不能直接对主存进行操作。并且每个线程不能访问其他线程的工作内存。

Java本身对原子性、可见性以及有序性提供的保证。1)、首先是原子性:Java对基本数据变量的读取和赋值是原子性的,即不可中断,不可分割。2)、可见性:对于可见性,Java提供了volatile关键字来保证可见性。当一个共享变量被volatile修饰时,它会保证修改的值会立即被更新到主存,当有其他线程需要读取时,它会去内存中读取新值。而普通的共享变量不能保证可见性,因为普通共享变量被修改之后,什么时候被写入主存是不确定的,当其他线程去读取时,此时内存中可能还是原来的旧值,因此无法保证可见性。另外,通过synchronized和Lock也能够保证可见性,synchronized和Lock能保证同一时刻只有一个线程获取锁然后执行同步代码,并且在释放锁之前会将对变量的修改刷新到主存当中。因此可以保证可见性。3)、有序性:在Java内存模型中,允许编译器和处理器对指令进行重排序,但是重排序过程不会影响到单线程程序的执行,却会影响到多线程并发执行的正确性。在Java里面,可以通过volatile关键字来保证一定的“有序性”(具体原理在下一节讲述)。另外可以通过synchronized和Lock来保证有序性,很显然,synchronized和Lock保证每个时刻是有一个线程执行同步代码,相当于是让线程顺序执行同步代码,自然就保证了有序性。

开始解析关键字volatile对变量:1、保证不同线程对这个变量操作时的可见性,即一个线程改变了由volatile修饰的变量,那么当这个变量的值发生改变时对其他线程来说这是立即能知道的。2、禁止指令重排。

原理是:1)、在volatile修饰是会将变量修改的值强制写入到主存里。2)、当变量法生改变时会导致其他线程缓存里的变量值无效,导致其他线程重新去主存里读取变量值,解决变量不一致的问题。

需要注意的问题: volatile是不保证指令的原子性的,即当指令出现非原子性操作的时候,如果不注意控制的话就会出现并发性问题。下边就是一个栗子

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
publicclass Test {
    publicvolatile int inc = 0;
 
    publicvoid increase() {
        inc++;
    }
 
    publicstatic void main(String[] args) {
        finalTest test = newTest();
        for(inti=0;i<10;i++){
            newThread(){
                publicvoid run() {
                    for(intj=0;j<1000;j++)
                        test.increase();
                };
            }.start();
        }
 
        while(Thread.activeCount()>1//保证前面的线程都执行完
            Thread.yield();
        System.out.println(test.inc);
    }
}
因为Inc++不是一个原子性操作:其中包括了三个操作:先取得Inc的值,然后在进行+1的操作,最后得到Inc的值,陷入原子性操作的时候,多线程就会出现问题了。比如:当一个线程执行Inc=3操作时,线程暂时停在那,另外一个线程开始进行运行,因为此时只是对线程进行读取,所以volatile并不会发动,当另外一个线程走完流程时,Inc出现了+1的效果,此时暂停的那个线程开始启动,但是他手里的值还是没有+1的效果。当运行完时,结果还是运行了两次Inc++的操作但是只得到一次增加的效果。解决方法也很简单,只需要在Inc++那个方法上加个锁就可以了。

volatile有禁止从新排列的效果,所以基本上是可以保证有序性的,其效果是:volatile修饰的关键字不会进行排序,且会保证其前面的语句运行完成。

Java的编译原理:下面这段话摘自《深入理解Java虚拟机》:

“观察加入volatile关键字和没有加入volatile关键字时所生成的汇编代码发现,加入volatile关键字时,会多出一个lock前缀指令”lock前缀指令实际上相当于一个内存屏障(也成内存栅栏),内存屏障会提供3个功能:1)它确保指令重排序时不会把其后面的指令排到内存屏障之前的位置,也不会把前面的指令排到内存屏障的后面;即在执行到内存屏障这句指令时,在它前面的操作已经全部完成;2)它会强制将对缓存的修改操作立即写入主存;3)如果是写操作,它会导致其他CPU中对应的缓存行无效。

应用场景:其实一句话:volatile是不能保证原子性操作的,所以,如果能保证指令原子性操作的情况下,就可以随意使用volatile关键字了。用官方术语来解释就是:

1)对变量的写操作不依赖于当前值

2)该变量没有包含在具有其他变量的不变式中

【基于QT的调色板】是一个使用Qt框架开发的色彩选择工具,类似于Windows操作系统中常见的颜色选取器。Qt是一个跨平台的应用程序开发框架,广泛应用于桌面、移动和嵌入式设备,支持C++和QML语言。这个调色板功能提供了横竖两种渐变模式,用户可以方便地选取所需的颜色值。 在Qt中,调色板(QPalette)是一个关键的类,用于管理应用程序的视觉样式。QPalette包含了一系列的颜色角色,如背景色、前景色、文本色、高亮色等,这些颜色可以根据用户的系统设置或应用程序的需求进行定制。通过自定义QPalette,开发者可以创建具有独特视觉风格的应用程序。 该调色板功能可能使用了QColorDialog,这是一个标准的Qt对话框,允许用户选择颜色。QColorDialog提供了一种简单的方式来获取用户的颜色选择,通常包括一个调色板界面,用户可以通过滑动或点击来选择RGB、HSV或其他色彩模型中的颜色。 横渐变取色可能通过QGradient实现,QGradient允许开发者创建线性或径向的色彩渐变。线性渐变(QLinearGradient)沿直线从一个点到另一个点过渡颜色,而径向渐变(QRadialGradient)则以圆心为中心向外扩散颜色。在调色板中,用户可能可以通过滑动条或鼠标拖动来改变渐变的位置,从而选取不同位置的颜色。 竖渐变取色则可能是通过调整QGradient的方向来实现的,将原本水平的渐变方向改为垂直。这种设计可以提供另一种方式来探索颜色空间,使得选取颜色更为直观和便捷。 在【colorpanelhsb】这个文件名中,我们可以推测这是与HSB(色相、饱和度、亮度)色彩模型相关的代码或资源。HSB模型是另一种常见且直观的颜色表示方式,与RGB或CMYK模型不同,它以人的感知为基础,更容易理解。在这个调色板中,用户可能可以通过调整H、S、B三个参数来选取所需的颜色。 基于QT的调色板是一个利用Qt框架和其提供的色彩管理工具,如QPalette、QColorDialog、QGradient等,构建的交互式颜色选择组件。它不仅提供了横竖渐变的色彩选取方式,还可能支持HSB色彩模型,使得用户在开发图形用户界面时能更加灵活和精准地控制色彩。
标题基于Spring Boot的二手物品交易网站系统研究AI更换标题第1章引言阐述基于Spring Boot开发二手物品交易网站的研究背景、意义、现状及本文方法与创新点。1.1研究背景与意义介绍二手物品交易的市场需求和Spring Boot技术的适用性。1.2国内外研究现状概述当前二手物品交易网站的发展现状和趋势。1.3论文方法与创新点说明本文采用的研究方法和在系统设计中的创新之处。第2章相关理论与技术介绍开发二手物品交易网站所涉及的相关理论和关键技术。2.1Spring Boot框架解释Spring Boot的核心概念和主要特性。2.2数据库技术讨论适用的数据库技术及其在系统中的角色。2.3前端技术阐述与后端配合的前端技术及其在系统中的应用。第3章系统需求分析详细分析二手物品交易网站系统的功能需求和性能需求。3.1功能需求列举系统应实现的主要功能模块。3.2性能需求明确系统应满足的性能指标和安全性要求。第4章系统设计与实现具体描述基于Spring Boot的二手物品交易网站系统的设计和实现过程。4.1系统架构设计给出系统的整体架构设计和各模块间的交互方式。4.2数据库设计详细阐述数据库的结构设计和数据操作流程。4.3界面设计与实现介绍系统的界面设计和用户交互的实现细节。第5章系统测试与优化说明对系统进行测试的方法和性能优化的措施。5.1测试方法与步骤测试环境的搭建、测试数据的准备及测试流程。5.2测试结果分析对测试结果进行详细分析,验证系统是否满足需求。5.3性能优化措施提出针对系统性能瓶颈的优化建议和实施方案。第6章结论与展望总结研究成果,并展望未来可能的研究方向和改进空间。6.1研究结论概括本文基于Spring Boot开发二手物品交易网站的主要发现和成果。6.2展望与改进讨论未来可能的系统改进方向和新的功能拓展。
1. 用户与权限管理模块 角色管理: 学生:查看个人住宿信息、提交报修申请、查看卫生检查结果、请假外出登记 宿管人员:分配宿舍床位、处理报修申请、记录卫生检查结果、登记晚归情况 管理员:维护楼栋与房间信息、管理用户账号、统计住宿数据、发布宿舍通知 用户操作: 登录认证:对接学校统一身份认证(模拟实现,用学号 / 工号作为账号),支持密码重置 信息管理:学生完善个人信息(院系、专业、联系电话),管理员维护所有用户信息 权限控制:不同角色仅可见对应功能(如学生无法修改床位分配信息) 2. 宿舍信息管理模块 楼栋与房间管理: 楼栋信息:名称(如 "1 号宿舍楼")、层数、性别限制(男 / 女 / 混合)、管理员(宿管) 房间信息:房间号(如 "101")、户型(4 人间 / 6 人间)、床位数量、已住人数、可用状态 设施信息:记录房间内设施(如空调、热水器、桌椅)的配置与完好状态 床位管理: 床位编号:为每个床位设置唯一编号(如 "101-1" 表示 101 房间 1 号床) 状态标记:标记床位为 "空闲 / 已分配 / 维修中",支持批量查询空闲床位 历史记录:保存床位的分配变更记录(如从学生 A 调换到学生 B 的时间与原因) 3. 住宿分配与调整模块 住宿分配: 新生分配:管理员导入新生名单后,宿管可按专业集中、性别匹配等规则批量分配床位 手动分配:针对转专业、复学学生,宿管手动指定空闲床位并记录分配时间 分配结果公示:学生登录后可查看自己的宿舍信息(楼栋、房间号、床位号、室友列表) 调整管理: 调宿申请:学生提交调宿原因(如室友矛盾、身体原因),选择意向宿舍(需有空位) 审批流程:宿管审核申请,通过后执行床位调换,更新双方住宿信息 换宿记录:保存调宿历史(申请人、原床位、新床位、审批人、时间) 4. 报修与安全管理模块 报修管理: 报修提交:学生选择宿舍、设施类型(如 "
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值