#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
int s[105][105][105];
int f[105];
int t[105][105];
int A[105][105];
struct poj1050 {
/*[问题描述]:用矩阵内部的所有元素和来衡量一个矩阵的大小,求最大子矩阵的元素和*/
/*[解题思路]:令s[i][j][row]表示sum(A[i][row],A[i+1][row],...A[j][row])
* s[i][j][row]=sum(A[1][row],...,A[j][row])-sum(A[1][row],...,A[i][row])
* f[k]表示数组s[i][j]的以第k个元素结尾的最大子段和,则f[k]=max(s[i][j][k],s[i][j][k]+f[k-1])
* t[i][j]表示第i行的前j个元素和,则s[i][j][row]=t[row][j]-t[row][i-1]
*/
int n;
void work() {
while (cin >> n) {
memset(t, 0, sizeof(t));
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
cin >> A[i][j];
t[i][j] = t[i][j - 1] + A[i][j];
}
}
int Max = -10000000;
memset(s, 0, sizeof(s));
for (int i = 1; i <= n; i++) {
for (int j = i; j <= n; j++) {
for (int k = 1; k <= n; k++) {
s[i][j][k] = t[k][j] - t[k][i - 1];
}
f[0] = -100000;
for (int k = 1; k <= n; k++) {
f[k] = max(s[i][j][k], s[i][j][k] + f[k - 1]);
Max = max(Max, f[k]);
}
}
}
cout << Max << endl;
}
}
};
int main()
{
poj1050 solution;
solution.work();
return 0;
}
poj1050-To the Max(最大子段和)
最新推荐文章于 2019-11-29 20:57:52 发布