pat甲级1009:Product of Polynomials

This time, you are supposed to find A*B where A and B are two polynomials.

Input Specification:

Each input file contains one test case. Each case occupies 2 lines, and each line contains the information of a polynomial: K N1 aN1 N2 aN2 … NK aNK, where K is the number of nonzero terms in the polynomial, Ni and aNi (i=1, 2, …, K) are the exponents and coefficients, respectively. It is given that 1 <= K <= 10, 0 <= NK < …< N2 < N1 <=1000.

Output Specification:

For each test case you should output the product of A and B in one line, with the same format as the input. Notice that there must be NO extra space at the end of each line. Please be accurate up to 1 decimal place.

翻译:
这一次,你要做的是找到A和B这两个多项式的乘积.

输入格式:

每个输入文件都包含一个测试用例。 每一行占用2行,每一行包含多项式的信息:其中K是多项式中非零项的个数,Ni和aNi(i = 1,2,…,N)。 …,K)分别是指数和系数。 其中1 <= K <= 10, 0 <= NK < …< N2 < N1 <=1000.

输出格式:
对于每个测试用例,你应该在一行中输出A和B的乘积,格式与输入相同。 请注意,每行末尾不得有额外的空格。 精确到小数点后1位。

思路:
使用链表来表示多项式A,B

步骤:

  1. 使用两次循环,将B的每一项与A的每一项相乘,得到链表P
  2. 多项式降幂排列: 遍历P的指数成员,将其存在一个数组中,然后对这个数组排序(降序),再依次在链表中查找数组中每一个元素,把每一个节点复制到新的链表中.
  3. 合并同类项: 在上一步中已经把多项式降幂排列了,所以如果某个节点的指数成员和下一个节点的指数成员相等,就可以把它们合并成一项.
  4. 删除系数为零的项:遍历链表,如果某个节点的系数成员为零,则删除这一项.

代码(我的环境为ms vs2017):

#include "stdafx.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <iostream>
#include <time.h>
#include <iomanip>
#include <math.h>
using namespace std;

struct LinkedList
{
    int Exp;//指数
    double Coe;//系数
    LinkedList* Next;
};
typedef LinkedList* List;
int cmp(const void* a, const void* b)
{
    return *(int*)a - *(int*)b;
}
class Stack
{
private:
    int NodeNumbers;
    List L;
public:
    Stack()
    {
        NodeNumbers = 0;
        L = new LinkedList;
        L->Coe = L->Exp = 0;
        L->Next = NULL;
    }
    bool IsEmpty()
    {
        return L->Next == NULL;
    }
    void Push(int Exp, double Coe)
    {
        List Tmp = new LinkedList;
        Tmp->Coe = Coe;
        Tmp->Exp = Exp;
        Tmp->Next = L->Next;
        L->Next = Tmp;
        NodeNumbers++;
    }
    void Pop()
    {
        if (IsEmpty())
        {
            cout << "Empty stack!" << endl;
            return;
        }
        List Tmp = L->Next;
        L->Next = Tmp->Next;
        delete Tmp;
        NodeNumbers--;
    }
    ~Stack()
    {
        List P = L->Next;
        while (P != NULL)
        {
            L->Next = P->Next;
            delete P;
            P = L->Next;
        }
        delete L;
    }
    void Show()
    {
        if (NodeNumbers == 0)
        {
            cout << "Empty stack!" << endl;
            return;
        }
        List Tmp = L->Next;
        cout << NodeNumbers << " ";
        for (int i = 0; i < NodeNumbers - 1; i++)
        {
            cout << fixed << setprecision(1) << Tmp->Exp << " " << fixed<<setprecision(1)<<Tmp->Coe << " ";
            Tmp = Tmp->Next;
        }
        cout << fixed << setprecision(1) << Tmp->Exp << " " << fixed << setprecision(1) << Tmp->Coe<<endl;
    }
    friend void Product(Stack& S1,Stack& S2,Stack& Res);
    void MergePolynomial()//合并同类项
    {
        List P = L->Next;
        /*if (P->Next == NULL)
            return;*/
        while (P->Next!= NULL)
        {
            if (P->Exp == P->Next->Exp)
            {
                List Tmp = P->Next;
                P->Coe = P->Coe + Tmp->Coe;
                P->Next = Tmp->Next;
                delete Tmp;
                NodeNumbers--;
            }
            P = P->Next;
            if (P == NULL)
                break;
        }
    }
    void ExpDescend()
    {
        if (IsEmpty())
        {
            cout << "Empty stack!" << endl;
            return;
        }
        int* ExpArray = new int[NodeNumbers];
        List LCopy = L->Next;
        for (int i = 0; i < NodeNumbers; i++)
        {
            ExpArray[i] = LCopy->Exp;
            LCopy = LCopy->Next;
        }
        qsort(ExpArray, NodeNumbers, sizeof(int), cmp);
        List DescendList = new LinkedList;
        DescendList->Coe = DescendList->Exp = 0;
        DescendList->Next = NULL;
        for (int i = 0; i < NodeNumbers; i++)
        {
            List P = L->Next;
            while (P != NULL&&P->Exp != ExpArray[i])
                P = P->Next;
            if (P != NULL)
            {
                List TmpCell = new LinkedList;
                TmpCell->Coe = P->Coe;
                TmpCell->Exp = P->Exp;
                TmpCell->Next = NULL;
                TmpCell->Next = DescendList->Next;
                DescendList->Next = TmpCell;
                P->Exp = -1;
            }
        }
        L = DescendList;
    }
    void DeleteNonTerm()
    {
        if (IsEmpty())
        {
            cout << "Empty stack!" << endl;
            return;
        }
        List P = L;
        while (P->Next != NULL)
        {
            if (abs(P->Next->Coe) < pow(10, -6))
            {
                List Temp = P->Next;
                P->Next = Temp->Next;
                delete Temp;
                NodeNumbers--;
            }
            P = P->Next;
        }
    }
};
void Product(Stack& S1, Stack& S2,Stack& Res)
{
    List Poly1 = S1.L;
    List Poly2 = S2.L;
    List ProdPoly = Res.L;
    if (Poly1 == NULL)
    {
        cout << "Sorry, Poly1 Is NULL" << endl;
        return;
    }
    if (Poly2 == NULL)
    {
        cout << "Sorry, Poly2 Is NULL" << endl;
        return;
    }
    List P1 = Poly1->Next;//P1遍历Poly1
    List P2 = Poly2->Next;//P2遍历Poly2
    List P3 = ProdPoly;//P3在ProdPoly上移动
    while (P1!=NULL)
    {
        while (P2 != NULL)
        {
            List P = (List)malloc(sizeof(LinkedList));
            P->Coe = P1->Coe*P2->Coe;
            P->Exp = P1->Exp + P2->Exp;
            P->Next = NULL;
            P3->Next = P;
            P3 = P3->Next;
            P2 = P2->Next;
            Res.NodeNumbers++;
        }
        P1 = P1->Next;
        P2 = Poly2->Next;
    }
    Res.ExpDescend();
    Res.MergePolynomial();
    Res.DeleteNonTerm();
}
int main()
{
    int K1, K2;
    cin >> K1;
    int* ExpArray1 = new int[K1];
    double* CoeArray1 = new double[K1];
    for (int i = 0; i < K1; i++)
        cin >> ExpArray1[i] >> CoeArray1[i];
    cin >> K2;
    int* ExpArray2 = new int[K2];
    double* CoeArray2 = new double[K2];
    for (int i = 0; i < K2; i++)
        cin >> ExpArray2[i] >> CoeArray2[i];

    Stack S1, S2;
    for (int i = 0; i < K1; i++)
    {
        S1.Push(ExpArray1[i], CoeArray1[i]);
    }
    for (int i = 0; i < K2; i++)
    {
        S2.Push(ExpArray2[i], CoeArray2[i]);
    }

    Stack Res;
    Product(S1, S2, Res);
    Res.Show();
    delete[]ExpArray1;
    delete[]CoeArray1;
    delete[]ExpArray2;
    delete[]CoeArray2;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值