leetcode No.461汉明距离

这篇博客探讨了一个巧妙的算法实现,用于计算两个整数之间的汉明距离。通过分支归并思想,该算法避免了复杂的循环,采用位操作技巧达到O(1)的时间复杂度,依次合并间隔为1、2、4、8、16的位,实现了高效的计算过程。

在这里插入图片描述
题目解出来非常简单, 但是最优解即O1解略烧脑

int hammingDistance(int x, int y)
{
	int ret = x ^ y;
	ret = (ret & 0x55555555) + ((ret >> 1) & 0x55555555);
	ret = (ret & 0x33333333) + ((ret >> 2) & 0x33333333);
	ret = (ret & 0x0f0f0f0f) + ((ret >> 4) & 0x0f0f0f0f);
	ret = (ret & 0x00ff00ff) + ((ret >> 8) & 0x00ff00ff);
	ret = (ret & 0x0000ffff) + ((ret >> 16) & 0x0000ffff);
	return ret;

}

该解法使用分支归并的思想, 先将间隔为1的各位数字合并, 随后间隔为2, 间隔为四,,,, 间隔为16时i, 两边的数字刚好能加到重合。

本文旨在系统阐述利用MATLAB平台执行多模态语音分离任务的方法,重点围绕LRS3数据集的数据生成流程展开。LRS3(长时RGB+音频语音数据集)作为一个规模庞大的视频与音频集合,整合了丰富的视觉与听觉信息,适用于语音识别、语音分离及情感分析等多种研究场景。MATLAB凭借其高效的数值计算能力与完备的编程环境,成为处理此类多模态任务的适宜工具。 多模态语音分离的核心在于综合利用视觉与听觉等多种输入信息来解析语音信号。具体而言,该任务的目标是从混合音频中分离出不同说话人的声音,并借助视频中的唇部运动信息作为辅助线索。LRS3数据集包含大量同步的视频与音频片段,提供RGB视频、单声道音频及对应的文本转录,为多模态语音处理算法的开发与评估提供了重要平台。其高质量与大容量使其成为该领域的关键资源。 在相关资源包中,主要包含以下两部分内容: 1. 说明文档:该文件详细阐述了项目的整体结构、代码运行方式、预期结果以及可能遇到的问题与解决方案。在进行数据处理或模型训练前,仔细阅读此文档对正确理解与操作代码至关重要。 2. 专用于语音分离任务的LRS3数据集版本:解压后可获得原始的视频、音频及转录文件,这些数据将由MATLAB脚本读取并用于生成后续训练与测试所需的数据。 基于MATLAB的多模态语音分离通常遵循以下步骤: 1. 数据预处理:从LRS3数据集中提取每段视频的音频特征与视觉特征。音频特征可包括梅尔频率倒谱系数、感知线性预测系数等;视觉特征则涉及唇部运动的检测与关键点定位。 2. 特征融合:将提取的音频特征与视觉特征相结合,构建多模态表示。融合方式可采用简单拼接、加权融合或基于深度学习模型的复杂方法。 3. 模型构建:设计并实现用于语音分离的模型。传统方法可采用自适应滤波器或矩阵分解,而深度学习方法如U-Net、Transformer等在多模态学习中表现优异。 4. 训练与优化:使用预处理后的数据对模型进行训练,并通过交叉验证与超参数调整来优化模型性能。 5. 评估与应用:采用信号失真比、信号干扰比及信号伪影比等标准指标评估模型性能。若结果满足要求,该模型可进一步应用于实际语音分离任务。 借助MATLAB强大的矩阵运算功能与信号处理工具箱,上述步骤得以有效实施。需注意的是,多模态任务常需大量计算资源,处理大规模数据集时可能需要对代码进行优化或借助GPU加速。所提供的MATLAB脚本为多模态语音分离研究奠定了基础,通过深入理解与运用这些脚本,研究者可更扎实地掌握语音分离的原理,从而提升其在实用场景中的性能表现。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
### 如何在 VSCode 中安装和配置 LeetCode 插件以及 Node.js 运行环境 #### 安装 LeetCode 插件 在 VSCode 的扩展市场中搜索 `leetcode`,找到官方提供的插件并点击 **Install** 按钮进行安装[^1]。如果已经安装过该插件,则无需重复操作。 #### 下载与安装 Node.js 由于 LeetCode 插件依赖于 Node.js 环境,因此需要下载并安装 Node.js。访问官方网站 https://nodejs.org/en/ 并选择适合当前系统的版本(推荐使用 LTS 版本)。按照向导完成安装流程后,需确认 Node.js 是否成功安装到系统环境中[^2]。 可以通过命令行运行以下代码来验证: ```bash node -v npm -v ``` 上述命令应返回对应的 Node.js 和 npm 的版本号。如果没有正常返回版本信息,则可能未正确配置环境变量。 #### 解决环境路径问题 即使完成了 Node.js 的安装,仍可能出现类似 “LeetCode extension needs Node.js installed in environment path” 或者 “command ‘leetcode.toggleLeetCodeCn’ not found” 的错误提示[^3]。这通常是因为 VSCode 未能识别全局的 Node.js 路径或者本地安装的 nvm 默认版本未被正确加载[^4]。 解决方法如下: 1. 手动指定 Node.js 可执行文件的位置 在 VSCode 设置界面中输入关键词 `leetcode`,定位至选项 **Node Path**,将其值设为实际的 Node.js 安装目录下的 `node.exe` 文件位置。例如:`C:\Program Files\nodejs\node.exe`。 2. 使用 NVM 用户管理工具调整默认版本 如果通过 nvm 工具切换了不同的 Node.js 版本,请确保设置了默认使用的版本号。可通过以下指令实现: ```bash nvm alias default <version> ``` 重新启动 VSCode 后测试功能键是否恢复正常工作状态。 --- #### 配置常用刷题语言 最后一步是在 VSCode 设置面板中的 LeetCode 插件部分定义个人习惯采用的主要编程语言作为默认提交方式之一。这样可以减少频繁修改编码风格的时间成本。 --- ### 总结 综上所述,要在 VSCode 上顺利启用 LeetCode 插件及其关联服务,除了基本插件本身外还需额外准备支持性的后台框架——即 Node.js 应用程序引擎;同时针对特定场景下产生的兼容性障碍采取针对性措施加以修正即可达成目标[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值