【ARM嵌入式Linux系统开发详解 弓雷】【第20章 Linux内核移植】20.1 Linux内核移植要点

本文主要介绍了Linux内核移植的基本要点,包括目标平台的选择、内存管理单元(MMU)的作用及其实现方式、内存映射的方法以及存储器类型对文件系统的影响等内容。

转自:http://blog.youkuaiyun.com/linuxdianc/article/details/5029282

转此文只是为了留个链接,以后方便查阅。上面这个博客里的内容挺多,虽然只有书中的几章,但内容还是很有代表性的。路过的可以去看看,对搞嵌入式的很有帮助。

 另外,http://book.51cto.com/art/200912/169104.htm这个地址也可以找到此文。

 

 

[+]

  1.   Linux内核移植要点
    1. .目标平台
    2. .内存管理单元(MMU)
    3. .内存映射
    4. .存储器

20.1  Linux内核移植要点

Linux的代码完全开放以及其良好的结构设计非常适于嵌入式系统。移植Linux系统包括内核、程序库和应用程序,其中最主要的就是内核移植。由于Linux内核的开放性,出现了许多针对嵌入式硬件系统的内核版本,其中著名的包括μcLinux、RT-Linux等。

Linux本身对内存管理(MMU)有很好的支持。因此,在移植的时候首先要考虑到目标硬件平台是否支持MMU。以ARM平台为例,ARM7内核的CPU不支持MMU,无法直接把Linux内核代码移植到ARM7核的硬件平台上。μcLinux是专门针对ARM7这类没有MMU的硬件平台上设计的,它精简了MMU部分代码。本书的目标平台是S3C2440A,该处理器基于ARM9核,支持MMU,可以直接移植Linux 2.6版本的内核代码。

一个硬件平台最主要的是处理器,因此在移植之前需要了解目标平台的处理器。ARM处理器内部采用32位的精简指令架构(RISC),核心结构设计相对简单,有低耗电量的优势,被广泛应用到各种领域。下面介绍一下移植Linux内核对硬件平台需要考虑的几个问题。

1.目标平台

目标平台包括了嵌入式处理器和周围器件,处理器可能整合了一些周围器件,如中断控制器、定时器、总线控制器等。在移植之前需要确定被移植系统对外部设备和总线的支持情况。本书的ARM开发板采用mini2440平台,在S3C2440A外围连接了许多外围设备,包括NOR Flash存储器、NAND Flash存储器、网络接口芯片、USB控制器等。在S3C2440A处理器内部集成了许多常用的控制器以及嵌入式领域常用的总线控制器。对于移植Linux内核来说,操作处理器内部的控制器要比外部的设备容易得多。

2.内存管理单元(MMU)

前面提到过MMU,对于现代计算机来说,MMU负责内存地址保护、虚拟地址和物理地址相互转换工作。在使用MMU的硬件平台上,操作系统通过MMU可以向应用程序提供大于实际物理内存的地址空间,使应用程序获得更高性能。Linux的虚拟内存管理功能就是借助MMU实现的。在移植的时候要考虑目标平台的MMU操作机制,这部分代码是较难理解的,最好能在相似代码基础上修改,降低开发难度。

3.内存映射

嵌入式系统大多都没有配备硬盘,外部存储器只有Flash,并且系统内存也非常有限。内存控制器(Memory Controller)负责内部和外部存储器在处理器地址空间的映射,由于硬件预设的地址不同导致每种平台内存映射的地址也不同。在移植时需要参考硬件的用户手册,得到内存地址的映射方法。

4.存储器

由于嵌入式系统多用Flash存储器作为存储装置。对于文件系统来说,在PC流行的ext2、ext3文件系统在嵌入式系统无法发挥作用。幸好Linux支持许多文件系统,针对Flash存储器可以使用JFFS2文件系统。在移植的时候,不必要的文件系统都可以裁剪掉。

 

安全帽与口罩检测数据集 一、基础信息 数据集名称:安全帽与口罩检测数据集 图片数量: - 训练集:1690张图片 - 验证集:212张图片 - 测试集:211张图片 - 总计:2113张实际场景图片 分类类别: - HelmetHelmet:戴安全帽的人员,用于安全防护场景的检测。 - personwithmask:戴口罩的人员,适用于公共卫生监测。 - personwith_outmask:未戴口罩的人员,用于识别未遵守口罩佩戴规定的情况。 标注格式:YOLO格式,包含边界框和类别标签,适用于目标检测任务。 数据格式:JPEG/PNG图片,来源于实际监控和场景采集,细节清晰。 二、适用场景 工业安全监控系统开发: 数据集支持目标检测任务,帮助构建自动检测人员是否佩戴安全帽的AI模型,适用于建筑工地、工厂等环境,提升安全管理效率。 公共卫生管理应用: 集成至公共场所监控系统,实时监测口罩佩戴情况,为疫情防控提供自动化支持,辅助合规检查。 智能安防与合规检查: 用于企业和机构的自动化安全审计,减少人工干预,提高检查准确性和响应速度。 学术研究与AI创新: 支持计算机视觉目标检测领域的研究,适用于安全与健康相关的AI模型开发和论文发表。 三、数据集优势 精准标注与实用性: 每张图片均经过标注,边界框定位准确,类别定义清晰,确保模型训练的高效性和可靠性。 场景多样性与覆盖性: 包含安全帽和口罩相关类别,覆盖工业、公共场所以及多种实际环境,样本丰富,提升模型的泛化能力和适应性。 任务适配性强: 标注兼容主流深度学习框架(如YOLO),可直接用于目标检测任务,便于快速集成和部署。 实际应用价值突出: 专注于工业安全和公共健康领域,为自动化监控、合规管理以及疫情防护提供可靠数据支撑,具有较高的社会和经济价值。
内容概要:本文围绕FOC电机控制代码实现与调试技巧在计算机竞赛中的应用,系统阐述了从基础理论到多场景优化的完整技术链条。文深入解析了磁链观测器、前馈控制、代码可移植性等关键概念,并结合FreeRTOS多任务调度、滑动窗口滤波、数据校验与热仿真等核心技巧,展示了高实时性与稳定性的电机控制系统设计方法。通过服务机器人、工业机械臂、新能源赛车等典型应用场景,论证了FOC在复杂系统协同中的关键技术价值。配套的千行级代码案例聚焦分层架构与任务同步机制,强化工程实践能力。最后展望数字孪生、低代码平台与边缘AI等未来趋势,体现技术前瞻性。; 适合人群:具备嵌入式开发基础、熟悉C语言与实时操作系统(如FreeRTOS)的高校学生或参赛开发者,尤其适合参与智能车、机器人等综合性竞赛的研发人员(经验1-3年为佳)。; 使用场景及目标:① 掌握FOC在多任务环境下的实时控制实现;② 学习抗干扰滤波、无传感器控制、跨平台调试等竞赛实用技术;③ 提升复杂机电系统的问题分析与优化能力; 阅读建议:此资源强调实战导向,建议结合STM32等开发平台边学边练,重点关注任务优先级设置、滤波算法性能权衡与观测器稳定性优化,并利用Tracealyzer等工具进行可视化调试,深入理解代码与系统动态行为的关系。
【场景削减】拉丁超立方抽样方法场景削减(Matlab代码实现)内容概要:本文介绍了基于拉丁超立方抽样(Latin Hypercube Sampling, LHS)方法的场景削减技术,并提供了相应的Matlab代码实现。该方法主要用于处理不确定性问题,特别是在电力系统、可再生能源等领域中,通过对大量可能场景进行高效抽样并削减冗余场景,从而降低计算复杂度,提高优化调度等分析工作的效率。文中强调了拉丁超立方抽样在保持样本代表性的同时提升抽样精度的优势,并结合实际科研背景阐述了其应用场景与价值。此外,文档还附带多个相关科研方向的Matlab仿真案例和资源下载链接,涵盖风电、光伏、电动汽车、微电网优化等多个领域,突出其实用性和可复现性。; 适合人群:具备一定Matlab编程基础,从事电力系统、可再生能源、优化调度等相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①应用于含高比例可再生能源的电力系统不确定性建模;②用于风电、光伏出力等随机变量的场景生成与削减;③支撑优化调度、风险评估、低碳运行等研究中的数据预处理环节;④帮助科研人员快速实现LHS抽样与场景削减算法,提升仿真效率与模型准确性。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,理解拉丁超立方抽样的原理与实现步骤,并参考附带的其他科研案例拓展应用思路;同时注意区分场景生成与场景削减两个阶段,确保在实际项目中正确应用该方法。
道路坑洞目标检测数据集 一、基础信息 • 数据集名称:道路坑洞目标检测数据集 • 图片数量: 训练集:708张图片 验证集:158张图片 总计:866张图片 • 训练集:708张图片 • 验证集:158张图片 • 总计:866张图片 • 分类类别: CirEllPothole CrackPothole IrrPothole • CirEllPothole • CrackPothole • IrrPothole • 标注格式:YOLO格式,包含边界框和类别标签,适用于目标检测任务。 • 数据格式:图片为常见格式(如JPEG/PNG),来源于相关数据采集。 二、适用场景 • 智能交通监控系统开发:用于自动检测道路坑洞,实现实时预警和维护响应,提升道路安全。 • 自动驾驶与辅助驾驶系统:帮助车辆识别道路缺陷,避免潜在事故,增强行驶稳定性。 • 城市基础设施管理:用于道路状况评估和定期检查,优化维护资源分配和规划。 • 学术研究与创新:支持计算机视觉在公共安全和交通领域的应用,推动算法优化和模型开发。 三、数据集优势 • 精准标注与类别覆盖:标注高质量,包含三种常见坑洞类型(CirEllPothole、CrackPothole、IrrPothole),覆盖不同形态道路缺陷。 • 数据多样性:数据集涵盖多种场景,提升模型在复杂环境下的泛化能力和鲁棒性。 • 任务适配性强:标注兼容主流深度学习框架(如YOLO),可直接用于目标检测任务,支持快速模型迭代。 • 实际应用价值:专注于道路安全与维护,为智能交通和城市管理提供可靠数据支撑,促进效率提升。
废物分类实例分割数据集 一、基础信息 数据集名称:废物分类实例分割数据集 图片数量: - 训练集:2,658张图片 - 验证集:316张图片 - 测试集:105张图片 - 总计:2,974张图片(训练集 + 验证集) 分类类别: - 电子产品(electronics) - 玻璃瓶(gbottle) - 口罩(mask) - 金属(metal) - 塑料袋(pbag) - 塑料瓶(pbottle) - 废物(waste) 标注格式:YOLO格式,包含多边形点坐标,适用于实例分割任务。 数据格式:JPEG图片,来源于实际场景,涵盖多种废物物品。 二、适用场景 智能废物分类系统开发: 数据集支持实例分割任务,帮助构建能够自动识别和分割废物物品的AI模型,辅助垃圾分类和回收管理。 环境监测与环保应用: 集成至智能垃圾桶或监控系统,提供实时废物识别功能,促进环保和资源回收。 学术研究与技术创新: 支持计算机视觉与环境保护交叉领域的研究,助力开发高效的废物处理AI解决方案。 教育与培训: 数据集可用于高校或培训机构,作为学习实例分割技术和AI在环境应用中实践的重要资源。 三、数据集优势 类别多样性与覆盖广: 包含7个常见废物和可回收物品类别,如电子产品、玻璃瓶、口罩、金属、塑料袋、塑料瓶和废物,涵盖日常生活中的多种物品,提升模型的泛化能力。 精准标注与高质量: 每张图片均使用YOLO格式进行多边形点标注,确保分割边界精确,适用于实例分割任务。 任务导向性强: 标注兼容主流深度学习框架,可直接用于实例分割模型的训练和评估。 实用价值突出: 专注于废物分类和回收管理,为智能环保系统提供关键数据支撑,推动可持续发展。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值