【PTA-A】1043 Is It a Binary Search Tree (25 分)(前序/后续遍历、镜像遍历、BST)

本文探讨了如何判断一个整数序列是否为二叉搜索树(BST)或其镜像的预遍历序列。通过构建BST并比较序列,文章提供了确定序列性质的方法,并展示了如何生成相应的后遍历序列。

A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:

  • The left subtree of a node contains only nodes with keys less than the node's key.
  • The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
  • Both the left and right subtrees must also be binary search trees.

If we swap the left and right subtrees of every node, then the resulting tree is called the Mirror Image of a BST.

Now given a sequence of integer keys, you are supposed to tell if it is the preorder traversal sequence of a BST or the mirror image of a BST.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (≤1000). Then N integer keys are given in the next line. All the numbers in a line are separated by a space.

Output Specification:

For each test case, first print in a line YES if the sequence is the preorder traversal sequence of a BST or the mirror image of a BST, or NO if not. Then if the answer is YES, print in the next line the postorder traversal sequence of that tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.

Sample Input 1:

7
8 6 5 7 10 8 11

Sample Output 1:

YES
5 7 6 8 11 10 8

Sample Input 2:

7
8 10 11 8 6 7 5

Sample Output 2:

YES
11 8 10 7 5 6 8

Sample Input 3:

7
8 6 8 5 10 9 11

Sample Output 3:

NO
#include<algorithm>
#include<iostream>
#include<vector>
using namespace std;
struct Node {
	int data;
	Node *left, *right;
};
vector<int> origin, pre, preM, post, postM;

void insert(Node* &root, int data) {
	if (root == NULL) {
		root = new Node;
		root->data = data;
		root->left = root->right = NULL;
		return;
	}
	if (data < root->data)insert(root->left, data);
	else insert(root->right,data);
}

void preorder(Node* root, vector<int>& vi) {
	if (root == NULL)return;
	vi.push_back(root->data);
	preorder(root->left, vi);
	preorder(root->right, vi);
}
void preorderM(Node* root, vector<int>& vi) {
	if (root == NULL)return;
	vi.push_back(root->data);
	preorderM(root->right, vi);
	preorderM(root->left, vi);
}
void postorder(Node* root, vector<int>& vi) {
	if (root == NULL)return;
	postorder(root->left, vi);
	postorder(root->right, vi);
	vi.push_back(root->data);
}
void postorderM(Node* root, vector<int>& vi) {
	if (root == NULL)return;
	postorderM(root->right, vi);
	postorderM(root->left, vi);
	vi.push_back(root->data);
}

int main() {
	int n, data;
	cin >> n;
	Node* root = NULL;
	for (int i = 0; i < n; i++) {
		scanf("%d", &data);
		origin.push_back(data);
		insert(root, data);
	}
	preorder(root, pre);
	preorderM(root, preM);
	postorder(root, post);
	postorderM(root, postM);
	if (origin == pre) {
		printf("YES\n");
		for (int i = 0; i < post.size(); i++) {
			printf("%d", post[i]);
			if (i != post.size() - 1)printf(" ");
		}
	}
	else if (origin == preM) {
		printf("YES\n");
		for (int i = 0; i < postM.size(); i++) {
			printf("%d", postM[i]);
			if (i != postM.size() - 1)printf(" ");
		}
	}
	else { printf("NO\n"); }
	return 0;
}

 

二叉树的前序遍历是指先访问根节点,然后递归地遍历左子树和右子树。其遍历顺序为:根 -> 左 -> 右。相应的,后续遍历则是先访问左子树,再访问右子树,最后访问根节点,即:左 -> 左 -> 根 -> 右 -> 右。 将二叉树转换为链表(也称为二叉树的中序遍历),通常采用迭代的方式来实现,因为二叉树的中序遍历本身就是从左到根再到右的顺序,非常适合构建链表。以下是C语言的一个简单示例: ```c #include <stdio.h> #include <stdlib.h> typedef struct TreeNode { int val; struct TreeNode *left; struct TreeNode *right; } TreeNode; // 中序遍历转化为链表 TreeNode* convertBSTToLL(TreeNode* root) { if (root == NULL) return NULL; TreeNode *prev = NULL, *current = root, *next = NULL; while (current != NULL) { next = current->left; // 先处理左子树 while (next != NULL) { prev = current; current = next; next = current->right; } // 将当前节点插入到链表中 prev->right = current; current->left = NULL; prev = current; current = next; } return root; } void printInorderTraversal(TreeNode* node) { if (node == NULL) return; printInorderTraversal(node->left); printf("%d ", node->val); printInorderTraversal(node->right); } int main() { // 创建一个简单的二叉树... // ... TreeNode *newRoot = convertBSTToLL(root); printf("Converted binary tree in-order traversal:\n"); printInorderTraversal(newRoot); // 打印链表形式的中序遍历 return 0; } ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值