快速排序
快速排序(Quicksort)
又称划分交换排序(partition-exchange sort),通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
步骤为:
1、从数列中挑出一个元素,称为"基准"(pivot),
2、重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区结束之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。
3、递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,但是这个算法总会结束,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。
快速排序的分析
快速排序的实现
def quick_sort(alist, start, end):
"""快速排序"""
# 递归的退出条件
if start >= end:
return
# 设定起始元素为要寻找位置的基准元素
mid = alist[start]
# low为序列左边的由左向右移动的游标
low = start
# high为序列右边的由右向左移动的游标
high = end
while low < high:
# 如果low与high未重合,high指向的元素不比基准元素小,则high向左移动
while low < high and alist[high] >= mid:
high -= 1
# 将high指向的元素放到low的位置上
alist[low] = alist[high]
# 如果low与high未重合,low指向的元素比基准元素小,则low向右移动
while low < high and alist[low] < mid:
low += 1
# 将low指向的元素放到high的位置上
alist[high] = alist[low]
# 退出循环后,low与high重合,此时所指位置为基准元素的正确位置
# 将基准元素放到该位置
alist[low] = mid
# 对基准元素左边的子序列进行快速排序
quick_sort(alist, start, low-1)
# 对基准元素右边的子序列进行快速排序
quick_sort(alist, low+1, end)
alist = [54,26,93,17,77,31,44,55,20]
quick_sort(alist,0,len(alist)-1)
print(alist)
快速排序时间复杂度
1、最优时间复杂度:O(nlogn)
2、最坏时间复杂度:O(n2)
3、稳定性:不稳定
从一开始快速排序平均需要花费O(n log n)时间的描述并不明显。但是不难观察到的是分区运算,数组的元素都会在每次循环中走访过一次,使用O(n)的时间。在使用结合(concatenation)的版本中,这项运算也是O(n)。
在最好的情况,每次我们运行一次分区,我们会把一个数列分为两个几近相等的片段。这个意思就是每次递归调用处理一半大小的数列。因此,在到达大小为一的数列前,我们只要作log n次嵌套的调用。这个意思就是调用树的深度是O(log n)。但是在同一层次结构的两个程序调用中,不会处理到原来数列的相同部分;因此,程序调用的每一层次结构总共全部仅需要O(n)的时间(每个调用有某些共同的额外耗费,但是因为在每一层次结构仅仅只有O(n)个调用,这些被归纳在O(n)系数中)。结果是这个算法仅需使用O(n log n)时间。
希尔排序
希尔排序(shell sort)
希尔排序(Shell Sort)是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。该方法因DL.Shell于1959年提出而得名。 希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。
希尔排序的基本思想:
将数组列在一个表中并对列分别进行插入排序,重复这过程,不过每次用更长的列(步长更长了,列数更少了)来进行。最后整个表就只有一列了。将数组转换至表是为了更好地理解这算法,算法本身还是使用数组进行排序。
希尔排序的分析
希尔排序的实现
def shell_sort(alist):
n = len(alist)
# 初始步长
gap = n / 2
while gap > 0:
# 按步长进行插入排序
for i in range(gap, n):
j = i
# 插入排序
while j>=gap and alist[j-gap] > alist[j]:
alist[j-gap], alist[j] = alist[j], alist[j-gap]
j -= gap
# 得到新的步长
gap = gap / 2
alist = [54,26,93,17,77,31,44,55,20]
shell_sort(alist)
print(alist)
时间复杂度
1、最优时间复杂度:根据步长序列的不同而不同
2、最坏时间复杂度:O(n2)
3、稳定性:不稳定