进程与线程的一个简单解释

本文通过生动的类比,详细解释了计算机操作系统中进程和线程的概念。将进程比作工厂车间,线程则为车间内的工人,以此形象地阐述了它们在任务执行中的角色与作用。

https://www.cnblogs.com/dreamroute/p/5207813.html

进程(process)和线程(thread)是操作系统的基本概念,但是它们比较抽象,不容易掌握。

最近,我读到一篇材料,发现有一个很好的类比,可以把它们解释地清晰易懂。

1.

计算机的核心是CPU,它承担了所有的计算任务。它就像一座工厂,时刻在运行。

2.

假定工厂的电力有限,一次只能供给一个车间使用。也就是说,一个车间开工的时候,其他车间都必须停工。背后的含义就是,单个CPU一次只能运行一个任务。

3.

进程就好比工厂的车间,它代表CPU所能处理的单个任务。任一时刻,CPU总是运行一个进程,其他进程处于非运行状态。

4.

一个车间里,可以有很多工人。他们协同完成一个任务。

5.

线程就好比车间里的工人。一个进程可以包括多个线程。

6.

车间的空间是工人们共享的,比如许多房间是每个工人都可以进出的。这象征一个进程的内存空间是共享的,每个线程都可以使用这些共享内存。

7.

可是,每间房间的大小不同,有些房间最多只能容纳一个人,比如厕所。里面有人的时候,其他人就不能进去了。这代表一个线程使用某些共享内存时,其他线程必须等它结束,才能使用这一块内存。

8.

一个防止他人进入的简单方法,就是门口加一把锁。先到的人锁上门,后到的人看到上锁,就在门口排队,等锁打开再进去。这就叫"互斥锁"(Mutual exclusion,缩写 Mutex),防止多个线程同时读写某一块内存区域。

9.

还有些房间,可以同时容纳n个人,比如厨房。也就是说,如果人数大于n,多出来的人只能在外面等着。这好比某些内存区域,只能供给固定数目的线程使用。

10.

这时的解决方法,就是在门口挂n把钥匙。进去的人就取一把钥匙,出来时再把钥匙挂回原处。后到的人发现钥匙架空了,就知道必须在门口排队等着了。这种做法叫做"信号量"(Semaphore),用来保证多个线程不会互相冲突。

不难看出,mutex是semaphore的一种特殊情况(n=1时)。也就是说,完全可以用后者替代前者。但是,因为mutex较为简单,且效率高,所以在必须保证资源独占的情况下,还是采用这种设计。

11.

操作系统的设计,因此可以归结为三点:

(1)以多进程形式,允许多个任务同时运行;

(2)以多线程形式,允许单个任务分成不同的部分运行;

(3)提供协调机制,一方面防止进程之间和线程之间产生冲突,另一方面允许进程之间和线程之间共享资源。

(完)

转:http://www.ruanyifeng.com/blog/2013/04/processes_and_threads.html

 

这里有一段知乎上的解释:

看见上面几位的回答我真的是醉了。说几句我的理解。

首先来一句概括的总论:进程和线程都是一个时间段的描述,是CPU工作时间段的描述。

下面细说背景
CPU+RAM+各种资源(比如显卡,光驱,键盘,GPS, 等等外设)构成我们的电脑,但是电脑的运行,实际就是CPU和相关寄存器以及RAM之间的事情。

一个最最基础的事实:CPU太快,太快,太快了,寄存器仅仅能够追的上他的脚步,RAM和别的挂在各总线上的设备完全是望其项背。那当多个任务要执行的时候怎么办呢?轮流着来?或者谁优先级高谁来?不管怎么样的策略,一句话就是在CPU看来就是轮流着来。

一个必须知道的事实:执行一段程序代码,实现一个功能的过程介绍 ,当得到CPU的时候,相关的资源必须也已经就位,就是显卡啊,GPS啊什么的必须就位,然后CPU开始执行。这里除了CPU以外所有的就构成了这个程序的执行环境,也就是我们所定义的程序上下文。当这个程序执行完了,或者分配给他的CPU执行时间用完了,那它就要被切换出去,等待下一次CPU的临幸。在被切换出去的最后一步工作就是保存程序上下文,因为这个是下次他被CPU临幸的运行环境,必须保存。

串联起来的事实:前面讲过在CPU看来所有的任务都是一个一个的轮流执行的,具体的轮流方法就是:先加载程序A的上下文,然后开始执行A,保存程序A的上下文,调入下一个要执行的程序B的程序上下文,然后开始执行B,保存程序B的上下文。。。

========= 重要的东西出现了========

进程和线程就是这样的背景出来的,两个名词不过是对应的CPU时间段的描述,名词就是这样的功能。

  • 进程就是包换上下文切换的程序执行时间总和 = CPU加载上下文+CPU执行+CPU保存上下文

线程是什么呢?
进程的颗粒度太大,每次都要有上下的调入,保存,调出。如果我们把进程比喻为一个运行在电脑上的软件,那么一个软件的执行不可能是一条逻辑执行的,必定有多个分支和多个程序段,就好比要实现程序A,实际分成 a,b,c等多个块组合而成。那么这里具体的执行就可能变成:

程序A得到CPU =》CPU加载上下文,开始执行程序A的a小段,然后执行A的b小段,然后再执行A的c小段,最后CPU保存A的上下文。

这里a,b,c的执行是共享了A的上下文,CPU在执行的时候没有进行上下文切换的。这里的a,b,c就是线程,也就是说线程是共享了进程的上下文环境,的更为细小的CPU时间段。

到此全文结束,再一个总结:


进程和线程都是一个时间段的描述,是CPU工作时间段的描述,不过是颗粒大小不同。

 

来自 https://www.zhihu.com/question/25532384

标题SpringBoot智能在线预约挂号系统研究AI更换标题第1章引言介绍智能在线预约挂号系统的研究背景、意义、国内外研究现状及论文创新点。1.1研究背景意义阐述智能在线预约挂号系统对提升医疗服务效率的重要性。1.2国内外研究现状分析国内外智能在线预约挂号系统的研究应用情况。1.3研究方法及创新点概述本文采用的技术路线、研究方法及主要创新点。第2章相关理论总结智能在线预约挂号系统相关理论,包括系统架构、开发技术等。2.1系统架构设计理论介绍系统架构设计的基本原则和常用方法。2.2SpringBoot开发框架理论阐述SpringBoot框架的特点、优势及其在系统开发中的应用。2.3数据库设计管理理论介绍数据库设计原则、数据模型及数据库管理系统。2.4网络安全数据保护理论讨论网络安全威胁、数据保护技术及其在系统中的应用。第3章SpringBoot智能在线预约挂号系统设计详细介绍系统的设计方案,包括功能模块划分、数据库设计等。3.1系统功能模块设计划分系统功能模块,如用户管理、挂号管理、医生排班等。3.2数据库设计实现设计数据库表结构,确定字段类型、主键及外键关系。3.3用户界面设计设计用户友好的界面,提升用户体验。3.4系统安全设计阐述系统安全策略,包括用户认证、数据加密等。第4章系统实现测试介绍系统的实现过程,包括编码、测试及优化等。4.1系统编码实现采用SpringBoot框架进行系统编码实现。4.2系统测试方法介绍系统测试的方法、步骤及测试用例设计。4.3系统性能测试分析对系统进行性能测试,分析测试结果并提出优化建议。4.4系统优化改进根据测试结果对系统进行优化和改进,提升系统性能。第5章研究结果呈现系统实现后的效果,包括功能实现、性能提升等。5.1系统功能实现效果展示系统各功能模块的实现效果,如挂号成功界面等。5.2系统性能提升效果对比优化前后的系统性能
在金融行业中,对信用风险的判断是核心环节之一,其结果对机构的信贷政策和风险控制策略有直接影响。本文将围绕如何借助机器学习方法,尤其是Sklearn工具包,建立用于判断信用状况的预测系统。文中将涵盖逻辑回归、支持向量机等常见方法,并通过实际操作流程进行说明。 一、机器学习基本概念 机器学习属于人工智能的子领域,其基本理念是通过数据自动学习规律,而非依赖人工设定规则。在信贷分析中,该技术可用于挖掘历史数据中的潜在规律,进而对未来的信用表现进行预测。 二、Sklearn工具包概述 Sklearn(Scikit-learn)是Python语言中广泛使用的机器学习模块,提供多种数据处理和建模功能。它简化了数据清洗、特征提取、模型构建、验证优化等流程,是数据科学项目中的常用工具。 三、逻辑回归模型 逻辑回归是一种常用于分类任务的线性模型,特别适用于二类问题。在信用评估中,该模型可用于判断借款人是否可能违约。其通过逻辑函数将输出映射为0到1之间的概率值,从而表示违约的可能性。 四、支持向量机模型 支持向量机是一种用于监督学习的算法,适用于数据维高、样本量小的情况。在信用分析中,该方法能够通过寻找最佳分割面,区分违约非违约客户。通过选用不同核函数,可应对复杂的非线性关系,提升预测精。 五、数据预处理步骤 在建模前,需对原始数据进行清理转换,包括处理缺失值、识别异常点、标准化数值、筛选有效特征等。对于信用评分,常见的输入变量包括收入水平、负债比例、信用历史记录、职业稳定性等。预处理有助于减少噪声干扰,增强模型的适应性。 六、模型构建验证 借助Sklearn,可以将数据集划分为训练集和测试集,并通过交叉验证调整参数以提升模型性能。常用评估指标包括准确率、召回率、F1值以及AUC-ROC曲线。在处理不平衡数据时,更应关注模型的召回率特异性。 七、集成学习方法 为提升模型预测能力,可采用集成策略,如结合多个模型的预测结果。这有助于降低单一模型的偏差方差,增强整体预测的稳定性准确性。 综上,基于机器学习的信用评估系统可通过Sklearn中的多种算法,结合合理的数据处理模型优化,实现对借款人信用状况的精准判断。在实际应用中,需持续调整模型以适应市场变化,保障预测结果的长期有效性。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值