人工智能(AI)是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。
但随着AI从云到边缘的发展,使得这一观点正在迅速改变,AI计算引擎使MCU能够突破嵌入式应用可能的极限,嵌入式设计已经能够提高网络攻击的实时响应能力和设备安全性。
支持AI的MCU
云计算推动了对具有AI功能的MCU的需求;它减少了数据传输所需的带宽,并节省了云服务器的处理能力,如下图。

配备AI算法的MCU正在应用包含对象识别,启用语音服务和自然语言处理等功能的应用程序。它们还有助于提高物联网(IoT),可穿戴设备和医疗应用中电池供电设备的准确性和数据隐私性。
那么,MCU如何在边缘和节点设计中实现AI功能?下面简要介绍了三种基本方法,这些方法使MCU能够在IoT网络边缘执行AI加速。
三个MCU + AI场合
第一种方法(可能是最常见的方法)涉及各种神经网络(NN)框架(例如Caffe 2,TensorFlow Lite和Arm NN)的模型转换,用于在MCU上部署云训练的模型和推理引擎。有一些软件工具可以从云中获取经过预训练的神经网络,并通过将其转换为C代码来针对MCU进行优化。
在MCU上运行的优化代码可以在语音,视觉和异常检测应用程序中执行AI功能。工程师可以将这些工具集下载到MCU配置中,并运行优化神经网络的推论。这些AI工具集还提供了基于神经网络的AI应用程序的代码示例。
AI执行模型转换工具可以在低成本和低功耗MCU上运行优化神经网络的推论,如下图所示。
MCU与AI:边缘计算的新篇章

随着AI技术从云端扩展到边缘,MCU开始具备AI功能,提升了物联网设备的安全性和实时响应能力。通过模型转换、本地AI库集成及专用协处理器,MCU在语音识别、对象识别等领域实现AI加速,预示着嵌入式设计的革新。
最低0.47元/天 解锁文章

1676

被折叠的 条评论
为什么被折叠?



