This is a super simple problem. The description is simple, the solution is simple. If you believe so, just read it on. Or if you don't, just pretend that you can't see this one.
We say an element is inside a matrix if it has four neighboring elements in the matrix (Those at the corner have two and on the edge have three). An element inside a matrix is called "nice" when its value equals the sum of its four neighbors. A matrix is called "k-nice" if and only if k of the elements inside the matrix are "nice".
Now given the size of the matrix and the value of k, you are to output any one of the "k-nice" matrix of the given size. It is guaranteed that there is always a solution to every test case.
Input
The first line of the input contains an integer T (1 <= T <= 8500) followed by T test cases. Each case contains three integers n, m, k (2 <= n, m <= 15, 0 <= k <= (n - 2) * (m - 2)) indicating the matrix size n * m and it the "nice"-degree k.
Output
For each test case, output a matrix with n lines each containing m elements separated by a space (no extra space at the end of the line). The absolute value of the elements in the matrix should not be greater than 10000.
Sample Input
2 4 5 3 5 5 3
Sample Output
2 1 3 1 1 4 8 2 6 1 1 1 9 2 9 2 2 4 4 3 0 1 2 3 0 0 4 5 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Author: ZHUANG, Junyuan
Source: The 6th Zhejiang Provincial Collegiate Programming Contest
题意:若一个数等于其相邻四数加和,我们就称它为nice数,现要求我们构建一个n*m的矩阵,其中恰好有n个nice数。
#include<bits/stdc++.h>
using namespace std;
int a[20][20];
int main()
{
int t;
scanf("%d",&t);
int n,m,k;
while(t--)
{
scanf("%d%d%d",&n,&m,&k);
memset(a,0,sizeof(a));
int cnt=1,flag=0;
k=(m-2)*(n-2)-k;
for(int i=0;i<n-1;i++)
{
for(int j=1;j<m-1;j++)
{
if(cnt<=k)
{
a[i][j]=cnt++;
}
else flag=1;
}
if(flag)
break;
}
for(int i=0;i<n;i++)
{
for(int j=0;j<m;j++)
{
printf("%d%c",a[i][j],j<m-1?' ':'\n');
}
}
}
}
本文介绍了一种构建特定矩阵的方法,即K-Nice矩阵。K-Nice矩阵是指在一个n*m的矩阵中,恰好有k个元素被称为“nice”,这些元素的值等于其四个邻居元素的和。文章提供了一个简单的实现思路,并附带了示例输入输出。
303

被折叠的 条评论
为什么被折叠?



