题目大意:给你n个字符串,你要对每个字符串求一个子序列,使得这些子序列非空并且两两不同,并且最长的子序列长度最短。n,∣s∣≤300n,|s|\le300n,∣s∣≤300
题解:显然二分答案x。通过精确的搜索可以对每个串找出长度不超过x的n个不同的子序列(显然如果一个串有至少n个本质不同的子序列那么其一定可以放到最后选),然后连边跑二分图匹配即可。
#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define Rep(i,v) rep(i,0,(int)v.size()-1)
#define lint long long
#define ull unsigned lint
#define db long double
#define pb push_back
#define mp make_pair
#define fir first
#define sec second
#define gc getchar()
#define debug(x) cerr<<#x<<"="<<x
#define sp <<" "
#define ln <<endl
using namespace std;
typedef pair<int,int> pii;
typedef set<int>::iterator sit;
typedef unordered_map<ull,int> umap;
inline int inn()
{
int x,ch;while((ch=gc)<'0'||ch>'9');
x=ch^'0';while((ch=gc)>='0'&&ch<='9')
x=(x<<1)+(x<<3)+(ch^'0');return x;
}
const int S=310,N=100000,M=1000000;
const ull BAS=97;const int INF=1000000;
int cnt,ycnt;umap id;
struct edges{
int to,pre,resf;
}e[M];int h[N],etop,lensav[N],lst[S],nxt[S][S][26],cur[N];
char ssav[N][S],c[S],s[S][S],anss[S][S];int ansl[S],len[S];
inline int add_edge(int u,int v,int f) { return e[++etop].to=v,e[etop].resf=f,e[etop].pre=h[u],h[u]=etop; }
inline int build_edge(int u,int v,int f) { return add_edge(u,v,f),add_edge(v,u,0); }
int dfs(char *s,int len,int (*nxt)[26],int x,ull v,int t,int l,int n)
{
if(cnt>=n) return 0;
if(t)
{
if(!id.count(v))
{
id[v]=++ycnt,h[ycnt]=0,lensav[ycnt]=t;
rep(i,1,t) ssav[ycnt][i]=c[i];
}
lst[++cnt]=id[v];
}
if(x==n||t==l) return 0;int y;
rep(i,0,25) if((y=nxt[x+1][i])<=len)
c[t+1]=s[y],dfs(s,len,nxt,y,v*BAS+s[y]-'a'+1,t+1,l,n);
return 0;
}
int lev[N];queue<int> q;
inline int bfs(int s,int t)
{
memset(lev,0,sizeof(int)*(t+1));
q.push(s),lev[s]=1;
while(!q.empty())
{
int x=q.front();q.pop();
for(int i=h[x],y;i;i=e[i].pre)
if(e[i].resf&&!lev[y=e[i].to])
lev[y]=lev[x]+1,q.push(y);
}
return lev[t]>0;
}
inline int dfs(int s,int t,int a)
{
if(s==t||!a) return a;int flow=0,f;
for(int &i=cur[s];i;i=e[i].pre)
if(lev[e[i].to]==lev[s]+1&&(f=dfs(e[i].to,t,min(a,e[i].resf)))>0)
{ flow+=f,a-=f,e[i].resf-=f,e[((i-1)^1)+1].resf+=f;if(!a) break; }
return flow;
}
inline int dinic(int s,int t)
{
int ans=0;
while(bfs(s,t))
memcpy(cur,h,sizeof(int)*(t+1)),ans+=dfs(s,t,INF);
return ans;
}
inline int solve(int l,int n,int qwq=1)
{
umap().swap(id),ycnt=n;rep(i,1,n) h[i]=0;etop=0;
rep(i,1,n)
{
cnt=0,dfs(s[i],len[i],nxt[i],0,0,0,l,n);
rep(j,1,cnt) build_edge(i,lst[j],1);
}
int s=ycnt+1,t=s+1;h[s]=h[t]=0;
rep(i,1,n) build_edge(s,i,1);
rep(i,n+1,ycnt) build_edge(i,t,1);
int ans=dinic(s,t);
if(ans<n) return 0;if(qwq) return 1;
rep(x,1,n)
{
for(int i=h[x],y;i;i=e[i].pre) if(!e[i].resf)
{
y=e[i].to;if(y<=n||y>ycnt) continue;
ansl[x]=lensav[y];rep(j,1,ansl[x]) anss[x][j]=ssav[y][j];
}
}
return 1;
}
inline int getnxt(char *s,int (*nxt)[26],int n)
{
rep(i,0,25) nxt[n+1][i]=n+1;
for(int i=n;i>=0;i--)
{
rep(j,0,25) nxt[i][j]=nxt[i+1][j];
nxt[i][s[i]-'a']=i;
}
return 0;
}
int main()
{
int n=inn(),L=1,R=0,ans=-1;
rep(i,1,n) scanf("%s",s[i]+1),len[i]=(int)strlen(s[i]+1);
rep(i,1,n) R=max(R,len[i]),getnxt(s[i],nxt[i],len[i]);
while(L<=R)
{
int mid=(L+R)>>1;
if(solve(mid,n)) ans=mid,R=mid-1;
else L=mid+1;
}
printf("%d\n",ans);if(ans<0) return 0;
solve(ans,n,0);
rep(i,1,n) { rep(j,1,ansl[i]) printf("%c",anss[i][j]);printf("\n"); }
return 0;
}