计时器

本文介绍了一种在Android应用中实现验证码发送后的倒计时功能的方法。通过使用Handler、Timer和TimerTask组件,可以有效地控制按钮状态并在界面上显示剩余时间。
public class MainActivity extends Activity  implements OnClickListener{

    private Button btn;
    int total=10;
    
    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);
        //获取button按钮
        btn=(Button) findViewById(R.id.btn);
        
        btn.setOnClickListener(this);//
        
        
    }
    Handler handler=new Handler(){
        
        public void handleMessage(Message msg) {
            //倒计时完成
            if(msg.what==1){
                timer.cancel();  
                total=10;
                btn.setEnabled(true);
                btn.setText("点击获取验证码");
            }else{
                btn.setEnabled(false);
                btn.setText(total+"");  //9 8 7 6   0
            }
            
        };
        
    };
    //

    private Timer timer;    @Override
    public void onClick(View v) {
        timer = new Timer();
        //使用timer进行计时
        timer.schedule(new TimerTask() {
            @Override
            public void run() {
                total--;
                //判断是否计时完成
                if(total==0){
                    handler.sendEmptyMessage(1);  //
                }else{
                    handler.sendEmptyMessage(2);
                }
                
            }
        }, 0, 1000);
        
    }

    

}

内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值