pyspark 实现LR

1. 相关包导入&客户端配置&加载数据

# -*- coding: utf-8 -*-

#1.1 加上下两行代码,可以直接使用python aa.py 执行
import findspark
findspark.init()

import datetime
import os
import logging
import numpy as np
import pandas as pd
from pyhive import hive

from pyspark import SparkConf, SparkContext
from pyspark.context import SparkContext
from pyspark.sql import HiveContext, SparkSession
from pyspark.sql.functions import current_date,datediff,udf
from pyspark.sql.types import StructField, StringType, FloatType, StructType, IntegerType, LongType

from pyspark.mllib.feature import Normalizer,StandardScaler
from pyspark.mllib.linalg import SparseVector, DenseVector
from pyspark.ml.feature import VectorAssembler,StringIndexer,QuantileDiscretizer,RFormula
from pyspark.ml.feature import MaxAbsScaler,StandardScaler,VectorAssembler,ChiSqSelector,OneHotEncoder
from pyspark.ml.classification import LogisticRegression
from pyspark.ml.evaluation import BinaryClassificationEvaluator, MulticlassClassificationEvaluator
from pyspark.ml.tuning import ParamGridBuilder, CrossValidator
from pyspark.ml import Pipeline,PipelineModel


if __name__ == "__main__":
    # 1.2 配置spark客户端
    spark = SparkSession \
        .builder \
        .enableHiveSupport() \
        .master("local[*]") \
        .appName("test_lr") \
        .config('spark.driver.maxResultSize', '10g') \
        .config('spark.driver.memory', '4g') \
        .config('spark.excutor.memory', '3g') \
        .getOrCreate()

    sc = spark.sparkContext
    sc.setLogLevel("ERROR")
    
     # 1.3 加载数据
    df = spark.read.options(inferSchema=True, header=True, delimiter='\t').csv('file:///data/kouhj/test_pysprk/data.csv')
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值