TensorFlow + Keras + YOLO V3用官网权重文件训练出错的注意事项

博主为后期用yolov3做物体检测,尝试用官网权重文件训练TensorFlow + Keras + YOLO V3。介绍了下载代码和权重文件、转换配置文件、运行目标检测的步骤,分享了运行中遇到的问题及解决办法,还提及安装gpu版本后测试情况和运行视频的修改要点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

后期要用yolov3做物体检测,所以想要先试试用官网权重文件,训练TensorFlow + Keras + YOLO V3。然后输入一张随便图像,试试效果。弄了大半天,问了好几次学长查了超多博客。。。

1、下载TensorFlow + Keras + YOLO V3代码(keras-yolo3文件夹)

https://github.com/qqwweee/keras-yolo3

2、下载yoloV3权重文件:

https://pjreddie.com/media/files/yolov3.weights

3、将darknet下的yolov3配置文件转换成keras适用的h5文件:

python3 convert.py yolov3.cfg yolov3.weights model_data/yolo.h5

这个地方注意了!!!我就是各种磕绊在最后两步!!!执行上述命令的步骤是,(1)将权重文件下载好后,放到第一步下载的keras-yolo3文件夹里 (2)在pycharm里把keras-yolo3文件夹打开,file----open----选择文件夹 (3)打开convert.py,然后右键点击“open in Terminal”   (4)在底下那个输入框里输入上述命令“python convert.py yolov3.cfg yolov3.weights model_data/yolo.h5”

第3步的步骤图

 

 

 

4、运行YOLO 目标检测,按照提示输入要测试的图片即可

python yolo.py

注意!!!!第四步我坑了很久,差点就放弃emmmmm!!!和第三步一样,“open in Terminal” ,然后输入上述指令。神奇的是,大家都说要这么做,但是我运行结果就一句"Using TensorFlow backend."根本没有输入图片的提示。。。查了很多博客,最后让我在评论里找到办法了哈哈哈哈哈哈。

方法一:“open in Terminal” ,输入"python yolo_video.py --image"(亲测有效)

之后就是按照提示,输入图像路径+名称。若将测试图像放在keras-yolo3文件夹里则只需输入文件名;不在同一文件夹则输入绝对路径。如下图:

第4步 步骤示意图
结果

 

第4步之输入绝对路径

方法二:给yolo.py 文件加以下代码段(亲测有效)

def detect_img(yolo):
    while True:
        img = input('Input image filename:')
        try:
            image = Image.open(img)
        except:
            print('Open Error! Try again!')
            continue
        else:
            r_image = yolo.detect_image(image)
            r_image.show()
    yolo.close_session()

if __name__ == '__main__':
    detect_img(YOLO()) 

改动之后,右键open in terminal,然后键入“python yolo.py”,输入图像名称即可。

以上参考https://blog.youkuaiyun.com/nofish_xp/article/details/81320314#commentsedit 文章和评论都不容错过

完成以上的两天后,我安装了tensorflow-gpu版本,安装过程一言难尽可看我另一篇博客。安装好gpu版本之后我就想再加载一下权重走一遍上述过程,第一次成功显示了上面那张图像,第二次我删除了yolo.py 的detect image(yolo)函数中的“continue”,按理来说不会影响结果,但是报错:cuda初始化失败。我重启pycharm之后把continue加回去试了一下成功,删掉continue再试,成功!!!所以continue删掉没关系啊,之前报错cuda初始化失败的原因目前不清楚。

四、运行视频

下面代码用于测试视频效果,需要修改两处(已在代码中标注):1.自己的训练权重路径   2.测试视频路径和保存路径,我代码中默认保存在该代码当前文件夹中。

# -*- coding: utf-8 -*-
"""
Class definition of YOLO_v3 style detection model on image and video
"""

import colorsys
import os
from timeit import default_timer as timer

import numpy as np
from keras import backend as K
from keras.models import load_model
from keras.layers import Input
from PIL import Image, ImageFont, ImageDraw

from yolo3.model import yolo_eval, yolo_body, tiny_yolo_body
from yolo3.utils import letterbox_image
import os
from keras.utils import multi_gpu_model

class YOLO(object):
    _defaults = {
        "model_path": 'model_data/yolo.h5',#【改1】自己的权重文件路径
        "anchors_path": 'model_data/yolo_anchors.txt',
        "classes_path": 'model_data/coco_classes.txt',
        "score" : 0.3,
        "iou" : 0.45,
        "model_image_size" : (416, 416),
        "gpu_num" : 1,
    }

    @classmethod
    def get_defaults(cls, n):
        if n in cls._defaults:
            return cls._defaults[n]
        else:
            return "Unrecognized attribute name '" + n + "'"

    def __init__(self, **kwargs):
        self.__dict__.update(self._defaults) # set up default values
        self.__dict__.update(kwargs) # and update with user overrides
        self.class_names = self._get_class()
        self.anchors = self._get_anchors()
        self.sess = K.get_session()
        self.boxes, self.scores, self.classes = self.generate()

    def _get_class(self):
        classes_path = os.path.expanduser(self.classes_path)
        with open(classes_path, encoding="utf-8") as f:
            class_names = f.readlines()
        class_names = [c.strip() for c in class_names]
        return class_names

    def _get_anchors(self):
        anchors_path = os.path.expanduser(self.anchors_path)
        with open(anchors_path) as f:
            anchors = f.readline()
        anchors = [float(x) for x in anchors.split(',')]
        return np.array(anchors).reshape(-1, 2)

    def generate(self):
        model_path = os.path.expanduser(self.model_path)
        assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.'

        # Load model, or construct model and load weights.
        num_anchors = len(self.anchors)
        num_classes = len(self.class_names)
        is_tiny_version = num_anchors==6 # default setting
        try:
            self.yolo_model = load_model(model_path, compile=False)
        except:
            self.yolo_model = tiny_yolo_body(Input(shape=(None,None,3)), num_anchors//2, num_classes) \
                if is_tiny_version else yolo_body(Input(shape=(None,None,3)), num_anchors//3, num_classes)
            self.yolo_model.load_weights(self.model_path) # make sure model, anchors and classes match
        else:
            assert self.yolo_model.layers[-1].output_shape[-1] == \
                num_anchors/len(self.yolo_model.output) * (num_classes + 5), \
                'Mismatch between model and given anchor and class sizes'

        print('{} model, anchors, and classes loaded.'.format(model_path))

        # Generate colors for drawing bounding boxes.
        hsv_tuples = [(x / len(self.class_names), 1., 1.)
                      for x in range(len(self.class_names))]
        self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
        self.colors = list(
            map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
                self.colors))
        np.random.seed(10101)  # Fixed seed for consistent colors across runs.
        np.random.shuffle(self.colors)  # Shuffle colors to decorrelate adjacent classes.
        np.random.seed(None)  # Reset seed to default.

        # Generate output tensor targets for filtered bounding boxes.
        self.input_image_shape = K.placeholder(shape=(2, ))
        if self.gpu_num>=2:
            self.yolo_model = multi_gpu_model(self.yolo_model, gpus=self.gpu_num)
        boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors,
                len(self.class_names), self.input_image_shape,
                score_threshold=self.score, iou_threshold=self.iou)
        return boxes, scores, classes

    def detect_image(self, image):
        start = timer()

        if self.model_image_size != (None, None):
            assert self.model_image_size[0]%32 == 0, 'Multiples of 32 required'
            assert self.model_image_size[1]%32 == 0, 'Multiples of 32 required'
            boxed_image = letterbox_image(image, tuple(reversed(self.model_image_size)))
        else:
            new_image_size = (image.width - (image.width % 32),
                              image.height - (image.height % 32))
            boxed_image = letterbox_image(image, new_image_size)
        image_data = np.array(boxed_image, dtype='float32')

        print(image_data.shape)
        image_data /= 255.
        image_data = np.expand_dims(image_data, 0)  # Add batch dimension.

        out_boxes, out_scores, out_classes = self.sess.run(
            [self.boxes, self.scores, self.classes],
            feed_dict={
                self.yolo_model.input: image_data,
                self.input_image_shape: [image.size[1], image.size[0]],
                K.learning_phase(): 0
            })

        print('Found {} boxes for {}'.format(len(out_boxes), 'img'))

        font = ImageFont.truetype(font='font/FiraMono-Medium.otf',
                    size=np.floor(3e-2 * image.size[1] + 0.5).astype('int32'))
        thickness = (image.size[0] + image.size[1]) // 300

        for i, c in reversed(list(enumerate(out_classes))):
            predicted_class = self.class_names[c]
            box = out_boxes[i]
            score = out_scores[i]

            label = '{} {:.2f}'.format(predicted_class, score)
            draw = ImageDraw.Draw(image)
            label_size = draw.textsize(label, font)

            top, left, bottom, right = box
            top = max(0, np.floor(top + 0.5).astype('int32'))
            left = max(0, np.floor(left + 0.5).astype('int32'))
            bottom = min(image.size[1], np.floor(bottom + 0.5).astype('int32'))
            right = min(image.size[0], np.floor(right + 0.5).astype('int32'))
            print(label, (left, top), (right, bottom))

            if top - label_size[1] >= 0:
                text_origin = np.array([left, top - label_size[1]])
            else:
                text_origin = np.array([left, top + 1])

            # My kingdom for a good redistributable image drawing library.
            for i in range(thickness):
                draw.rectangle(
                    [left + i, top + i, right - i, bottom - i],
                    outline=self.colors[c])
            draw.rectangle(
                [tuple(text_origin), tuple(text_origin + label_size)],
                fill=self.colors[c])
            draw.text(text_origin, label, fill=(0, 0, 0), font=font)
            del draw

        end = timer()
        print(end - start)
        return image

    def close_session(self):
        self.sess.close()

def detect_video(yolo, video_path, output_path=""):
    import cv2
    vid = cv2.VideoCapture(video_path)
    if not vid.isOpened():
        raise IOError("Couldn't open webcam or video")
    video_FourCC    = int(vid.get(cv2.CAP_PROP_FOURCC))
    video_fps       = vid.get(cv2.CAP_PROP_FPS)
    video_size      = (int(vid.get(cv2.CAP_PROP_FRAME_WIDTH)),
                        int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT)))
    isOutput = True if output_path != "" else False
    if isOutput:
        print("!!! TYPE:", type(output_path), type(video_FourCC), type(video_fps), type(video_size))
        out = cv2.VideoWriter("./video/test1.mp4",video_FourCC, video_fps, video_size)
    accum_time = 0
    curr_fps = 0
    fps = "FPS: ??"
    prev_time = timer()
    while True:
        return_value, frame = vid.read()
        image = Image.fromarray(frame)
        image = yolo.detect_image(image)
        result = np.asarray(image)
        curr_time = timer()
        exec_time = curr_time - prev_time
        prev_time = curr_time
        accum_time = accum_time + exec_time
        curr_fps = curr_fps + 1
        if accum_time > 1:
            accum_time = accum_time - 1
            fps = "FPS: " + str(curr_fps)
            curr_fps = 0
        cv2.putText(result, text=fps, org=(3, 15), fontFace=cv2.FONT_HERSHEY_SIMPLEX,
                    fontScale=0.50, color=(255, 0, 0), thickness=2)
        cv2.namedWindow("result", cv2.WINDOW_NORMAL)
        cv2.imshow("result", result)
        if isOutput:
            out.write(result)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    yolo.close_session()

if __name__ =='__main__':
    yolo=YOLO()
    detect_video(yolo, video_path = '你的视频路径', output_path="output.mp4") #【改2】

 

### RK3588平台NPU调用方法 #### 创建和初始化NPU环境 为了在RK3588平台上成功调用NPU进行神经网络推理或加速,首先需要确保设备已正确配置并加载了相应的驱动程序。Rockchip的官方固件通常已经预装了RKNPU驱动[^3]。 一旦确认硬件准备就绪,可以通过以下方式创建和初始化NPU环境: ```cpp #include "rknn_api.h" // 初始化模型路径和其他参数 const char* model_path = "./model.rknn"; int ret; rknn_context ctx; ret = rknn_init(&ctx, model_path, 0, 0, NULL); if (ret < 0) { printf("Failed to initialize rknn context\n"); } ``` 这段代码展示了如何使用`rknn_api.h`库来初始化一个RKNN上下文对象,这一步骤对于后续的操作至关重要[^2]。 #### 加载和编译模型 接下来,在实际运行之前还需要加载预先训练好的神经网络模型文件(通常是`.rknn`格式)。此过程涉及读取模型二进制数据,并将其传递给RKNN API以便内部处理和优化。 ```cpp // 假设模型已经被转换成 .rknn 文件格式 char *model_data; // 模型的数据指针 size_t model_size; // 模型大小 FILE *fp = fopen(model_path, "rb+"); fseek(fp, 0L, SEEK_END); model_size = ftell(fp); rewind(fp); model_data = (char *)malloc(sizeof(char)*model_size); fread(model_data, sizeof(unsigned char), model_size, fp); fclose(fp); // 将模型数据传入RKNN API ret = rknn_load_rknn(ctx, &model_data, &model_size); free(model_data); if(ret != 0){ printf("Load Model Failed!\n"); } else{ printf("Model Loaded Successfully.\n"); } ``` 这里说明了从磁盘读取模型文件的具体操作流程,并通过API函数将这些信息提交给了底层框架去解析和设置好用于推断所需的资源[^1]。 #### 执行前向传播计算 当一切准备工作完成后就可以开始真正的预测工作——即让NPU执行一次完整的前向传播运算。这个阶段主要是构建输入张量、启动异步任务以及收集输出结果。 ```cpp float input_tensor[INPUT_SIZE]; // 输入特征图数组 float output_tensors[MAX_OUTPUTS][OUTPUT_SIZE]; // 输出特征图数组 struct rknn_input inputs[] = {{input_tensor}}; struct rknn_output outputs[MAX_OUTPUTS]; for(int i=0;i<NUM_ITERATIONS;++i){ memset(inputs, 0 ,sizeof(struct rknn_input)); memcpy(input_tensor, inputData[i], INPUT_SIZE*sizeof(float)); // 启动推理任务 ret = rknn_run(ctx, nullptr); if(ret!=0){ printf("Inference failed at iteration %d", i); break; } // 获取输出结果 for(size_t j=0;j<num_outputs;++j){ struct rknn_output& out = outputs[j]; size_t bufSize = OUTPUT_SIZE * sizeof(float); void* buffer = malloc(bufSize); ret = rknn_get_output(ctx, j, &out.datatype, &buffer, &bufSize, false); if(!ret && buffer){ memcpy(output_tensors[j], buffer, bufSize); free(buffer); } } } printf("All iterations completed successfully."); ``` 上述片段体现了典型的基于RKNN SDK的应用场景:先准备好待测样本作为输入;接着触发内核中的计算逻辑;最后获取到经过变换后的响应值供下一步分析所用[^4]。
评论 40
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值