Python-sklearn包中StratifiedKFold和KFold生成交叉验证数据集的区别

一、StratifiedKFold及KFold主要区别及函数参数
KFold交叉采样:将训练/测试数据集划分n_splits个互斥子集,每次只用其中一个子集当做测试集,剩下的(n_splits-1)作为训练集,进行n_splits次实验并得到n_splits个结果。
注:对于不能均等分的数据集,前n_samples%n_spllits子集拥有n_samples//n_spllits+1个样本,其余子集都只有n_samples//n_spllits个样本。(例10行数据分3份,只有一份可分4行,其他均为3行)

sklearn.model_selection.KFold(n_splits=3,shuffle=False,random_state=None)

n_splits:表示将数据划分几等份
shuffle:在每次划分时,是否进行洗牌
若为False,其效果相当于random_state为整数(含零),每次划分的结果相同
若为True,每次划分的结果不一样,表示经过洗牌,随机取样的
random_state:随机种子数,当设定值(一般为0)后可方便调参,因为每次生成的数据集相同

StratifiedKFold分层采样,用于交叉验证:与KFold最大的差异在于,StratifiedKFold方法是根据标签中不同类别占比来进行拆分数据的。

sklearn.model_selection.StratifiedKFold(n_splits=3,shuffle=False,random_state=None)

参数含义同KFold。

二、实例分析两者差别
首先生成8行数据(含特征和标签数据)

import numpy as np
from sklearn.model_selection import StratifiedKFold,KFold

X=np.array([
    [1,2,<
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值