转载自https://blog.youkuaiyun.com/u010700335/article/details/74488262
一、特征选择和降维
1、相同点和不同点
特征选择和降维有着些许的相似点,这两者达到的效果是一样的,就是试图去减少特征数据集中的属性(或者称为特征)的数目;但是两者所采用的方式方法却不同:降维的方法主要是通过属性间的关系,如组合不同的属性得新的属性,这样就改变了原来的特征空间;而特征选择的方法是从原始特征数据集中选择出子集,是一种包含的关系,没有更改原始的特征空间。
2、降维的主要方法
- Principal Component Analysis(主成分分析),详细见“简单易学的机器学习算法——主成分分析(PCA)”
- Singular Value Decomposition(奇异值分解),详细见“简单易学的机器学习算法——SVD奇异值分解”
- Sammon's Mapping(Sammon映射)
二、特征选择的目标
- 提高预测的准确性
- 构造更快,消耗更低的预测模型
- 能够对模型有更好的理解和解释
三、特征选择的方法
1、Filter方法
其主要思想是:对每一维的特征“打分”,即给每一维的特征赋予权重,这样的权重就代表着该维特征的重要性,然后依据权重排序。
主要的方法有:
- Chi-squared test(卡方检验)
- information gain(信息增益),详细可见“简单易学的机器学习算法——决策树之ID3算法”
- correlation coefficient scores(相关系数)
2、Wrapper方法
其主要思想是:将子集的选择看作是一个搜索寻优问题,生成不同的组合,对组合进行评价,再与其他的组合进行比较。这样就将子集的选择看作是一个是一个优化问题,这里有很多的优化算法可以解决,尤其是一些启发式的优化算法,如GA,PSO,DE,ABC等,详见“优化算法——人工蜂群算法(ABC)”,“优化算法——粒子群算法(PSO)”
3、Embedded方法